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The matrix ¥, is actually a scatter matrix which contains information about the
distribution of the gradient of J.; w.r.t. w over all planes in the matched plane set.
Performing principal component analysis upon W, results in

Ar1 ah
v, = QwAsz - |:q7r1 T qrrﬁ} ’ (31)
>\7r6 qzﬁ



where Ay > Ay > --- > )g are the eigenvalues of V¥, and q; are the corresponding
eigenvectors, of which the first three elements are the translation components, and the
last three elements are the rotation components. The eigenvector q; corresponding to
the largest eigenvalue represents the transformation of maximum constraint. Perturbing
the plane parameters by the transformation of the direction q; will result in the largest
possible change in from among all possible transformation perturbations.

2.1.1 Degenerate Cases

Define the matrix H and compute its SVD decomposition as
N
H= ZTnicnf = U A VE =AU 1V 4 Arole oV, + AU sv) g (32)

where the singular values A1, A\r2, Ar 3 satisfy Ax1 > Aro > Ars.

(1) Assuming that A\, 3 = 0, °n!v, 3 = 0 holds true for all ¢ = 1,--- | N. For a small
camera motion dw = [uv] 3, 07]" in the direction of v, 3, the variation of the cost
function §J,(dw) = dwl W dw caused by dw is always zero. That is to say, the
perturbation in the direction of v, 3 will cause no change of the cost function.

(2) Similarly, when A\;; = A\;2 = 0, for all i = 1,--- | N “n; satisfies ‘n] v, 5 = 0,
CniTvmg = 0 and “n; X vp3 = 0. In this case, for a small camera motion dw =
[vaz,z + N2V£,3a M3V7:C,1]T7 6.Jz(0w) = 0.

2.2 NG RINLEM T RIAT R T
2.3  ETFEMAGZ LD AL
2.4 Edge-based Camera Motion Estimation

2.4.1 Points’ Constraints on Camera Motion

Suppose that all the occluding edge points are directly used in the pose estimation.
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where all the point coordinates are referred to the centroid.
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The scatter matrix ¥, is defined likewise.

Np T
_ } : a‘]p,k aJp,k’
‘I'p_kzl(aw)(aw) (35)
where 97
.k Lss | je.u o
= -2 ~ - Rcr - tcr 36
OwW |: Tp:),k ‘| ( po,k ( po,k) ) ( )

2.4.2 Degenerate Cases

(1) It can be seen from W, that if 3v such that "p;,, x v=_0forall k =1,--- /N, ie.,
the measured points are collinear (at least two points), 4.J,(0w) = dw’ ¥,dw = 0 for
ow = [0T uvT]T.

(2) If there is only one measured point, "p),, = 0. In this case, for any rotation w € R3,

6J,(6w) = owl ¥ 6w = 0 for ow = [07,wT]7T.

2.5 Plane-Edge-based Camera Motion Estimation

The overall objective function is

J(W) = Jo(W) + Jpuw(W) (37)

2.5.1 Point Weighting

For each occluding edge point “p,x, a weight o, is assigned to the corresponding
component in the cost function

Np
Jpw(W) = Z W kel k (38)
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2.5.2 Degenerate Cases

Suppose that the measurements include both planes and points. Combining the de-
generate cases stated in 1.1.2 and 1.2.2 yields the following cases.

(1) Arp=Arz2=0and "p,, xv=0forall k=1,---,N, hold true simultaneously, and
v and v, happen to be of the same direction, i.e., v x v;; = 0. In this case, the
camera motion along éw = [07 ,quJ]T cannot be constrained.



(2) If Ar1 = Ar2 = 0 and there is only one measured point, the camera motion along
ow = [07, pv] )" cannot be constrained.

3 Plane and Point based Camera Tracking with Un-
known Correspondences

The plane segmentation method proposed in [1] and the edge detection method pro-
posed in [2] are used to detect the planar segments and edge points in an RGB-D scan.
A detected planar segment P;,i = 1,--- , N has the following attributes.

e plane parameters m; = [n], d;]*
e number of points N, ;

e centroid py;

e covariance C.;

Suppose that {"P;}i=1.. v, and {°P;};=1... n. are planar segments extracted from ref-
erence and current frame, respectively. Each planar segment P; is modeled as a Gaussian
distribution N (pr, Cri). {"Postr=1, N, and {“Poi}i=1... n,. are occluding edge points
extracted from reference and current frame, respectively. The planar segments and oc-
cluding edge points extracted from two successive frames are used simultaneously in a
ICP framework. In each iteration of ICP, the correspondences between planar segments
are assigned by checking the Bhattacharyya distance between the Gaussian distribution
that models the planar segments.

1 1 C-
DBha(Pia Pj) - Q (pw,i - Pw,j)T C;l (pﬂ,i - pn,j) + - 1In <|—|> (42)

8 2 \WVICrillCrjl

where C, = % (Cri+ Cy ). The correspondences between points are assigned by check-
ing the Euclidean distance between the point coordinates.

DEuc(po,k7 po,l) - ||po,k: - po,l||2 (43)

The whole ICP framework is presented in Algorithm 2.

Algorithm 1 Planar Segment and Occluding Edge Point based ICP
Inputs:
Planar segments extracted from two frames {"P;}i=1... n, and {°P;j}j=1,.. N.-
Occluding edge points extracted from two frames {"pox fr=1,. N, and {“Po;}i=1,.. N,.-
Outputs:
Transformation between two frames T, = Ry, ter.

4 Plane Fusion

A plane P;



Table 1:
Plane-Point ICP  STING

Frl/xyz 0.0123 0.0114
Frl/room  0.0817 0.0832
Fr3/cabinet 0.0382 0.0326

e plane parameters m; = [n?, d;]T
e number of points N, ;

e centroid py;

e covariance Cy ;

e curvature pr; !

e shadow points {pi,k, k=1, vNi}

p

5 Least Primitives for Pose Estimation
5.1 Three Planes
Three corresponding non-parallel planes {"m;, “m;, }i—123. Let

er — [rnl "Ny rn3j|

ch — [Cnl ‘ny cn3}

cd, —7d, (44)
d=|°—"d,
Cd3 _ Tds

The rotation R., and translation t.. can be computed as

R, = “M;"M;!

45
te = “M;d (45)

5.2 Two Planes and One Point

Two corresponding non-parallel planes {"m;,“m;, };=12 and one corresponding point

{"Po, “Po}- Construct three axes "X,”y,"z in reference coordinate system and locate
the origin at "p,.

Tg — _Tn2
ry = rnl X Tng (46)
Ty — g % T’y

!'Note that the curvature here is just an indication that tells how a surface deviates from being a flat
plane, rather than the strictly defined curvature.
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The axes and the origin in current frame is constructed likewise.
Cx — _cn2
CS’ = Cnl X CHQ (47)
CZ — CX X Cy
Let
M, =I"%x "V "%
=%y (48)
CM2 — [CX cy CZ]
Then the rotation R, and translation t.. can be computed as
R, = ‘My"MZ
L (49)

tcr - Cpo - Rchpo

5.3 One Plane and Two Points

One corresponding plane {", °x, } and two different corresponding points {"po j, “Po.; } j=1,2
satisfying ("Po1—"Poz2) X # 0 and (°p,1—Po2) X0 # 0. Construct three axes "X,"y, "z
in reference coordinate system and locate the origin at "p, .

- "y (50)
Y =7
Il
T — TR X ry
The axes and the origin in current frame is constructed likewise.
C}/\{ — _Cn
Cy = (cpo,Q - cpo,l) - ((Cpo,2 - Cpo,l) cn> n
on ‘y (51)
Y = 1
[y
‘Z=°XX°y
Let
™= ["%x "V "z
3 [ Yy } (52)



Then the rotation R, and translation t.. can be computed as

R, = ‘M;3"MZ
te, = Cpo,l - Rcrrpa,l

6 previous version

6.1 Points’ Constraints on Camera Motion

Suppose that all the occluding edge points are directly used in the pose estimation.

Zka Zekek

N,, (54)
c r T /¢
= Z ( Pf;,k — Ry ( P;k) - t/cr) ( P;,k — Rer ( pokz) —t, ))
k=1
where all the point coordinates are referred to the centroid.
t/cr = tcr - CI_)O + Rcr (rl_)o)
Cp;,k = Cpo,k - CI_)O7 Tp/ng = Tpo,k - Tf)o
LM M (55)
CI_)O = X Po,k; Po = Po,k
% % &

The scatter matrix ¥, is defined likewise.

Np T
B 0Jpk 0Jpk
‘Pp_z(aw)(aw) (56)

where

0J k I3 3 c r
a\l?)V = -2 |: TIA)Z,k ( p;,k - Rcr( pi),k) - tc”') (57)

6.2 Degenerate Cases

(1) Tt can be seen from W, that if 3v such that "p;,, x v=0for all k =1,--- | N,, i.e,
the measured points are collinear (at least two points), 4.J,(0w) = dw! ¥,dw = 0 for
ow = [07, uvT]T.

(2) If there is only one measured point, "p;,, = 0. In this case, for any rotation w € R3,
6J,(6w) = owl W ,6w = 0 for ow = [07,wT]7T.

6.2.1 Point Weighting

For each occluding edge point “p,x, a weight oy, is assigned to the corresponding
component in the cost function

Np
w) = Zapk*]nk (58)
k=1

12
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J P,k
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6.2.2 Degenerate Cases

Suppose that the measurements include both planes and points. Combining the de-
generate cases stated in 1.1.2 and 1.2.2 yields the following cases.

(1) Ap=Ar2=0and"p,, xv=0foralk=1,--- N, hold true simultaneously, and
v and v, happen to be of the same direction, i.e., v X v; = 0. In this case, the
camera motion along éw = [07, uv] |7 cannot be constrained.

(2) If \r1 = Ar2 = 0 and there is only one measured point, the camera motion along
ow = [07, uvI,]" cannot be constrained.

7 Plane and Point based Camera Tracking with Un-
known Correspondences

The plane segmentation method proposed in [1] and the edge detection method pro-
posed in [2] are used to detect the planar segments and edge points in an RGB-D scan.
A detected planar segment P;,7 = 1,--- , N has the following attributes.

e plane parameters m; = [n}, d;]7
e number of points N ;

e centroid py;

e covariance Cy ;

Suppose that {"P;}i-1.. n, and {°P;};—1.. n. are planar segments extracted from ref-
erence and current frame, respectively. Each planar segment P; is modeled as a Gaussian
distribution N (pri; Cry). {"Posk th=1, N, and {“Po}i=1,.. n,. are occluding edge points
extracted from reference and current frame, respectively. The planar segments and oc-
cluding edge points extracted from two successive frames are used simultaneously in a
ICP framework. In each iteration of ICP, the correspondences between planar segments
are assigned by checking the Bhattacharyya distance between the Gaussian distribution
that models the planar segments.

1 _ 1 C,
DBha(Piy P]) -9 (pﬂ’,i - pﬂ,j)T Cnl (pw,i - pﬂ',j) + = In (l—‘> (62)

8 2\ VICICx]
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Table 2:
Plane-Point ICP  STING

Frl/xyz 0.0123 0.0114
Frl/room  0.0817 0.0832
Fr3/cabinet 0.0382 0.0326

where C, = 1 (C,; + C, ;). The correspondences between points are assigned by check-
ing the Euclidean distance between the point coordinates.

DEuc(po,lm po,l) = Hpo,k - po,lHQ (63)
The whole ICP framework is presented in Algorithm 2.

Algorithm 2 Planar Segment and Occluding Edge Point based ICP
Inputs:
Planar segments extracted from two frames {"P;};—1.. n, and {“P;}j=1 ... N.-
Occluding edge points extracted from two frames {"pox}r=1,--,~,, and {“Poi}i=1,. N,.-
Outputs:
Transformation between two frames T, = Ry, ter.

8 Plane Fusion

A plane P;
e plane parameters m; = [n], d;]*
e number of points N, ;
e centroid p;;
e covariance C.;
e curvature pr ; 2

e shadow points {p?k, k=1,--- N}

9 Least Primitives for Pose Estimation

9.1 Three Planes
Three corresponding non-parallel planes {"m;, “m;, }iz123. Let
TMl = [Tnl TIIQ Tng}

ch — [Cnl ‘ny cn3}

cdl _ rdl (64)
d=|°dy—"dy
Cd3 _ T‘d3

2Note that the curvature here is just an indication that tells how a surface deviates from being a flat
plane, rather than the strictly defined curvature.

14
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Figure 6: (a)Frl/xyz; (b)Frl/room; (c¢)Fr3/cabinet;
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The rotation R, and translation t.. can be computed as
R, = “M;"M;"!
te = “M;7d

9.2 Two Planes and One Point

Two corresponding non-parallel planes {"m;,“m;, };=12 and one corresponding point

{"Po, “Po}- Construct three axes "X,”y,"z in reference coordinate system and locate
the origin at "p,.

Ty — —Tl’lg

<

v ="n; x "ny (66)
=T X Ty

The axes and the origin in current frame is constructed likewise.

% = —°n,
‘y =‘n; X ‘ny (67)
G =% x §
Let r ry T TS
N )
M [cx o5 cz]
Then the rotation R, and translation t.,. can be computed as
N NAT
R, = “My"M, (69)

tcr - Cpo - Rchpo

9.3 One Plane and Two Points

One corresponding plane {"7, °w, } and two different corresponding points {"p,.;, “Po.j } j=1.2
satisfying ("Po1—"Poz2) X0 # 0 and (“py1—“Po2) X0 # 0. Construct three axes "X,"y, "z
in reference coordinate system and locate the origin at "p, ;.

T

"Xx=-"n

ry (Tpo,2 o Tpo,l) o ((rpo72 o rpo,l)T rn> rn

LTy (70)
Y=

"yl
Ti:T)A(XTSf
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The axes and the origin in current frame is constructed likewise.

y = (Cpo72 . Cpo,l) . ((Cpo,2 . cng)T cn> ‘n

ey (71)
Y = Tewll
|l
Ci — C)A( X C}",
Let
™. = ["x Vv T3
N ™)
M; = [X y z]
Then the rotation R, and translation t.. can be computed as
R., = “M;" M7
P (73)

_c r
tcr - po,l - Rcr po,l
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