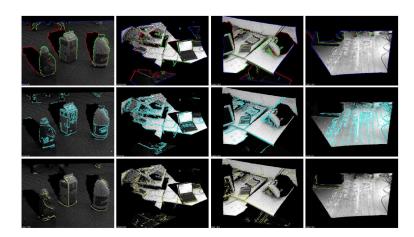
Shadow SLAM

Sun Qinxuan

June 21, 2018

OUTLINE

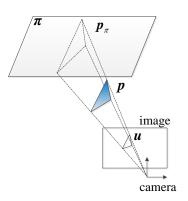
- Edge Detection
 - RGB-D Edge Detection Method
- Shadows SLAM
 - Shadows on a Plane
 - Scan Alignment


RGB-D Edge Detection Method ¹

Five types of edges can be extracted from an RGB-D scan:

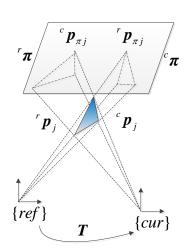
- Occluding Edges,
- Occluded Edges,
- Boundary Edges,
- RGB Edges,
- and High Curvature Edges.

¹RGB-D Edge Detection and Edge-based Registration, IGRA, 2013.


RGB-D Edge Detection Method

Shadows on a Plane

For a 3D point in the camera coordinate frame p (a point on the occluding edge), its projection on plane $\pi = [n,d]^T$ is p_{π} (a point on the occluded edge).

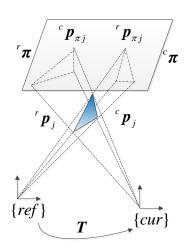

$$\boldsymbol{p}_{\pi} = \mu(\pi, \boldsymbol{p}) = -\frac{d}{\boldsymbol{n}^T \boldsymbol{p}} \boldsymbol{p} \qquad (1)$$

Scan Alignment

The motion of the camera between two successive frames is represented by $\xi = [t^T, \omega^T]^T \in \mathbb{R}^6$. The exponential of $\hat{\omega} \in \mathfrak{so}(3)$ ($\hat{\omega}$ is the skew-symmetric matrix associated with $\omega \in \mathbb{R}^3$) is a 3D rotation denoted by $\mathbf{R} \in \mathbb{SO}(3)$. And $t \in \mathbb{R}^3$ is the translation vector. $T(\xi, {}^{r}p)$ represents the transformation from the reference frame to the current frame.

$$T(r\mathbf{p}_{j},\xi) = \mathbf{R} \cdot r\mathbf{p}_{j} + \mathbf{t}$$
 (2)

Scan Alignment


 $^{r}\pi$ and $^{c}\pi$ are matched planes.

 ${}^{r}p_{j}$ and ${}^{c}p_{j}$ are matched occluding points.

 ${}^r p_{\pi j}$ and ${}^c p_{\pi j}$ are the occluded points corresponding to ${}^r p_j$ and ${}^c p_j$, respectively.

The objective function is

$$F(\xi) = \|{}^{c}\boldsymbol{p}_{j} - T({}^{r}\boldsymbol{p}_{j}, \xi)\|^{2} + \|{}^{c}\boldsymbol{p}_{\pi j} - \mu \left({}^{c}\boldsymbol{\pi}, T({}^{r}\boldsymbol{p}_{j}, \xi)\right)\|^{2}$$
(3)

