Line-based Shadow SLAM

Sun Qinxuan

March 26, 2019

< □ > < 同 > < 三

 \equiv >

Shadow of 3D lines on Planes Alignment of Occluded Lines

OUTLINE

Plücker Coordinates of 3D Lines

3 Motion Estimation using Planes and Occluding Lines

Plücker Coordinates of 3D Lines

- The Plücker coordinates of a 3D line are denoted by $\mathcal{L} = [\mathbf{u}^T, \mathbf{v}^T]^T \in \mathbb{P}^5$, where the vector $\mathbf{u} \in \mathbb{R}^3$ is normal to the interpretation plane $\pi_{\mathcal{L}}$ containing the line \mathcal{L} and the origin, and $\mathbf{v} \in \mathbb{R}^3$ is the line direction.¹
- \mathcal{L} satisfies the Plücker constraint $u^T v = 0$.
- The Plücker matrix is defined by

$$\boldsymbol{L} = \begin{bmatrix} [\boldsymbol{u}]_{\times} & \boldsymbol{v} \\ -\boldsymbol{v}^T & \boldsymbol{0} \end{bmatrix}$$
(1)

¹G. Zhang, J. Lee, J. Lim and H. Suh, Building a 3-D line-based map using stereo SLAM, IEEE Transactions on Robotics, vol. 31, no. 6, pp. 1364-1377, 2015: $\bullet \triangleleft \square \bullet \triangleleft \supseteq \bullet \triangleleft \supseteq \bullet \square$

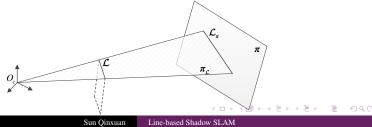
Shadow of 3D lines on Planes

The plane π_L ∈ P³ joining the occluding line L and the origin O_c is calculated by

$$\boldsymbol{\pi}_{\mathcal{L}} = \boldsymbol{L}^* \cdot \tilde{\boldsymbol{O}}_c = [\boldsymbol{u}^T, 0]^T \tag{2}$$

where $\tilde{\boldsymbol{O}}_c = [0, 0, 0, 1]^T$ is the homogeneous coordinates of the origin and \boldsymbol{L}^* is the dual Plücker matrix associated with $\boldsymbol{\mathcal{L}}$ which is computed by

$$\boldsymbol{L}^* = \begin{bmatrix} [\boldsymbol{v}]_{\times} & \boldsymbol{u} \\ -\boldsymbol{u}^T & \boldsymbol{0} \end{bmatrix}$$
(3)

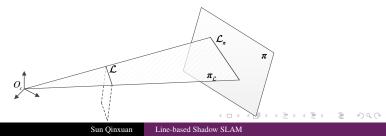


Shadow of 3D lines on Planes

The occluded line on the plane π = [n^T, d]^T ∈ P³ corresponding to the occluding line *L* is denoted by *L*_π. The corresponding dual Plücker matrix *L*^{*}_π is calculated by

$$L_{\pi}^{*} = \pi \pi_{\mathcal{L}}^{T} - \pi_{\mathcal{L}} \pi^{T}$$
$$= \begin{bmatrix} [\boldsymbol{u} \times \boldsymbol{n}]_{\times} & -d\boldsymbol{u} \\ d\boldsymbol{u}^{T} & 0 \end{bmatrix}$$
(4)

• The Plücker coordinates $\boldsymbol{L}_{\pi}^* = [-d\boldsymbol{u}^T, (\boldsymbol{u} \times \boldsymbol{n})^T]^T$.



Motion Estimation using Occluding Lines

- The left superscript *c* and *r* represent the current and reference frame, respectively.
- The rigid transformation of a plane

$$T_{cr}({}^{r}\pi) = \begin{bmatrix} T_{cr}({}^{r}n) \\ T_{cr}({}^{r}n,{}^{r}d) \end{bmatrix} = \begin{bmatrix} \mathbf{R}_{cr} & \mathbf{0} \\ -\mathbf{t}_{cr}^{T}\mathbf{R}_{cr} & 1 \end{bmatrix} \cdot \begin{bmatrix} {}^{r}n \\ {}^{r}d \end{bmatrix}$$
$$= \begin{bmatrix} \mathbf{R}_{cr}{}^{r}n \\ -\mathbf{t}_{cr}^{T}\mathbf{R}_{cr}{}^{r}n + {}^{r}d \end{bmatrix}$$
(5)

• The rigid transformation of a 3D line

$$T_{cr}({}^{r}\mathcal{L}) = \begin{bmatrix} T_{cr}({}^{r}\boldsymbol{u},{}^{r}\boldsymbol{v}) \\ T_{cr}({}^{r}\boldsymbol{v}) \end{bmatrix} = \begin{bmatrix} \boldsymbol{R}_{cr} & [\boldsymbol{t}_{cr}] \times \boldsymbol{R}_{cr} \\ \boldsymbol{0} & \boldsymbol{R}_{cr} \end{bmatrix} \cdot \begin{bmatrix} {}^{r}\boldsymbol{u} \\ {}^{r}\boldsymbol{v} \end{bmatrix}$$

$$= \begin{bmatrix} \boldsymbol{R}_{cr}{}^{r}\boldsymbol{u} + [\boldsymbol{t}_{cr}] \times \boldsymbol{R}_{cr}{}^{r}\boldsymbol{v} \\ \boldsymbol{R}_{cr}{}^{r}\boldsymbol{v} \end{bmatrix}$$
(6)

Motion Estimation using Occluding Lines

• The objective function is defined by

$$E(\mathbf{R}_{cr}, \mathbf{t}_{cr}) = \alpha_{\pi} \sum_{j=1}^{N_{\pi}} \left\| {}^{c} \boldsymbol{\pi}_{j} - T_{cr}({}^{r} \boldsymbol{\pi}_{j}) \right\|_{2}^{2} + \alpha_{\mathcal{L}} \sum_{i=1}^{N_{\mathcal{L}}} \left\| {}^{c} \boldsymbol{\mathcal{L}}_{i} - T_{cr}({}^{r} \boldsymbol{\mathcal{L}}_{i}) \right\|_{2}^{2}$$
(7)
= $E_{1}(\mathbf{R}_{cr}) + E_{2}(\mathbf{R}_{cr}, \mathbf{t}_{cr})$

where

$$E_{1}(\boldsymbol{R}_{cr}) = \alpha_{\pi} \sum_{j=1}^{N_{\pi}} \left\| {}^{c}\boldsymbol{n}_{j} - T_{cr}({}^{c}\boldsymbol{n}_{j}) \right\|_{2}^{2} + \alpha_{\mathcal{L}} \sum_{i=1}^{N_{\mathcal{L}}} \left\| {}^{c}\boldsymbol{v}_{i} - T_{cr}({}^{c}\boldsymbol{v}_{i}) \right\|_{2}^{2}$$
(8)

$$E_{2}(\boldsymbol{R}_{cr},\boldsymbol{t}_{cr}) = \alpha_{\pi} \sum_{j=1}^{N_{\pi}} \left\| {}^{c}d_{j} - T_{cr}({}^{c}\boldsymbol{n}_{i},{}^{c}d_{j}) \right\|^{2} + \alpha_{\mathcal{L}} \sum_{i=1}^{N_{\mathcal{L}}} \left\| {}^{c}\boldsymbol{u}_{i} - T_{cr}({}^{c}\boldsymbol{u}_{i},{}^{c}\boldsymbol{v}_{i}) \right\|_{2}^{2}$$
(9)

Motion Estimation using Occluding Lines

- The rotation R_{cr} (represented by a unit quaternion q_{cr}) is determined by minimizing (8).
- Rewrite (8) as

$$E_{1}(\boldsymbol{R}_{cr}) = \alpha_{\pi} \sum_{j=1}^{N_{\pi}} \left\| {}^{c}\boldsymbol{n}_{j} - T_{cr}({}^{c}\boldsymbol{n}_{j}) \right\|_{2}^{2} + \alpha_{\mathcal{L}} \sum_{i=1}^{N_{\mathcal{L}}} \left\| {}^{c}\boldsymbol{v}_{i} - T_{cr}({}^{c}\boldsymbol{v}_{i}) \right\|_{2}^{2}$$

$$= \alpha_{\pi} \sum_{j=1}^{N_{\pi}} \left\| {}^{c}\boldsymbol{n}_{j} - \boldsymbol{q}_{cr} * {}^{c}\boldsymbol{n}_{j} * \boldsymbol{q}_{cr} \right\|_{2}^{2} + \alpha_{\mathcal{L}} \sum_{i=1}^{N_{\mathcal{L}}} \left\| {}^{c}\boldsymbol{v}_{i} - \boldsymbol{q}_{cr} * {}^{c}\boldsymbol{v}_{i} * \boldsymbol{q}_{cr} \right\|_{2}^{2}$$

$$= \alpha_{\pi} \sum_{j=1}^{N_{\pi}} \left\| {}^{c}\boldsymbol{n}_{j} * \boldsymbol{q}_{cr} - \boldsymbol{q}_{cr} * {}^{c}\boldsymbol{n}_{j} \right\|_{2}^{2} + \alpha_{\mathcal{L}} \sum_{i=1}^{N_{\mathcal{L}}} \left\| {}^{c}\boldsymbol{v}_{i} * \boldsymbol{q}_{cr} - \boldsymbol{q}_{cr} * {}^{c}\boldsymbol{v}_{i} \right\|_{2}^{2}$$

$$= \alpha_{\pi} \sum_{j=1}^{N_{\pi}} \left\| \boldsymbol{A}_{j} \boldsymbol{q}_{cr} \right\|_{2}^{2} + \alpha_{\mathcal{L}} \sum_{i=1}^{N_{\mathcal{L}}} \left\| \boldsymbol{B}_{i} \boldsymbol{q}_{cr} \right\|_{2}^{2}$$

$$= \boldsymbol{q}_{cr}^{T} \boldsymbol{M} \boldsymbol{q}_{cr}$$

Motion Estimation using Occluding Lines

with

$$M = \alpha_{\pi} \sum_{j=1}^{N_{\pi}} A_j^T A_j + \alpha_{\mathcal{L}} \sum_{i=1}^{N_{\mathcal{L}}} B_i^T B_i \in \mathbb{R}^{4 \times 4}$$
$$A_j = \begin{bmatrix} 0 & (^r n_i - ^c n_i)^T \\ -(^r n_i - ^c n_i) & [^r n_i + ^c n_i]_{\times} \end{bmatrix}$$
$$B_i = \begin{bmatrix} 0 & (^r v_i - ^c v_i)^T \\ -(^r v_i - ^c v_i) & [^r v_i + ^c v_i]_{\times} \end{bmatrix}$$
(11)

イロト イ伊ト イヨト イヨト

• *q_{cr}* is the eigenvector corresponding to the smallest eigenvalue of the matrix *M*.

Motion Estimation using Occluding Lines

• The translation t_{cr} is determined by minimizing (9).

• Letting
$$\frac{\partial E_2}{\partial t_{cr}} = 0$$
 yields
 $\Psi t_{cr} = b$ (12)

with

$$\Psi = \alpha_{\pi} \sum_{j=1}^{N_{\pi}} (\boldsymbol{R}_{cr}{}^{r}\boldsymbol{n}_{j}) (\boldsymbol{R}_{cr}{}^{r}\boldsymbol{n}_{j})^{T} + \alpha_{\mathcal{L}} \sum_{i=1}^{N_{\mathcal{L}}} [\boldsymbol{R}_{cr}{}^{r}\boldsymbol{u}_{i}]_{\times}^{T} [\boldsymbol{R}_{cr}{}^{r}\boldsymbol{u}_{i}]_{\times}$$

$$\boldsymbol{b} = -\alpha_{\pi} \sum_{j=1}^{N_{\pi}} (\boldsymbol{R}_{cr}{}^{r}\boldsymbol{n}_{j}) ({}^{c}\boldsymbol{d}_{j} - {}^{r}\boldsymbol{d}_{j}) - \alpha_{\mathcal{L}} \sum_{i=1}^{N_{\mathcal{L}}} [\boldsymbol{R}_{cr}{}^{r}\boldsymbol{u}_{i}]_{\times}^{T} ({}^{c}\boldsymbol{u}_{i} - \boldsymbol{R}_{cr}{}^{r}\boldsymbol{u}_{i})$$
(13)

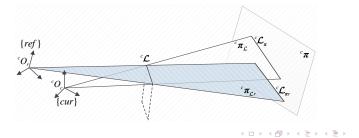
▲ 伊 ▶ ▲ 臣 ▶

- E

Alignment of Occluded Lines

- The origin of the reference frame w.r.t. the current frame is ${}^{c}O_{r} = t_{cr}$.
- The plane ${}^{c}\pi_{\mathcal{L}r}$ joining the line ${}^{c}\mathcal{L}$ and the origin of the reference frame ${}^{c}O_{r}$ is calculated by

$${}^{c}\boldsymbol{\pi}_{\mathcal{L}r} = {}^{c}\boldsymbol{L}^{*} \cdot {}^{c}\boldsymbol{\tilde{O}}_{r} = \begin{bmatrix} [{}^{c}\boldsymbol{\nu}]_{\times}\boldsymbol{t}_{cr} + {}^{c}\boldsymbol{u} \\ -{}^{c}\boldsymbol{u}^{T}\boldsymbol{t}_{cr} \end{bmatrix}$$
(14)



Alignment of Occluded Lines

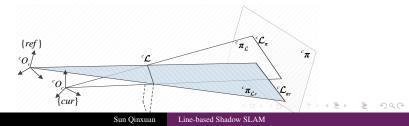
• The occluded line ${}^{c}\mathcal{L}_{\pi r}$ intersecting ${}^{c}\pi_{\mathcal{L}r}$ and the plane ${}^{c}\pi$ is calculated by

$$L_{\pi r}^{*} = {}^{c} \pi^{c} \pi_{\mathcal{L}r}^{T} - {}^{c} \pi_{\mathcal{L}r}^{c} \pi^{T}$$
$$= \begin{bmatrix} {}^{[c} v_{\pi r}]_{\times} & {}^{c} u_{\pi r} \\ -{}^{c} u_{\pi r}^{T} & 0 \end{bmatrix}$$
(15)

with

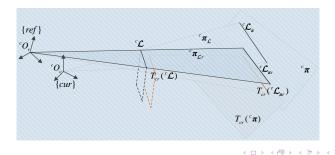
$${}^{c}\boldsymbol{u}_{\pi r} = -{}^{c}\boldsymbol{d}([{}^{c}\boldsymbol{v}]_{\times}\boldsymbol{t}_{cr} + {}^{c}\boldsymbol{u}) - {}^{c}\boldsymbol{n}\boldsymbol{t}_{cr}^{T}{}^{c}\boldsymbol{u}$$

$${}^{c}\boldsymbol{v}_{\pi r} = -[{}^{c}\boldsymbol{n}]_{\times}[{}^{c}\boldsymbol{v}]_{\times}\boldsymbol{t}_{cr} + [{}^{c}\boldsymbol{u}]_{\times}{}^{c}\boldsymbol{n}$$
(16)



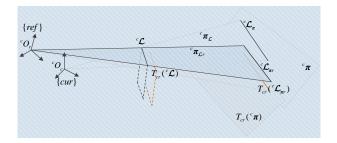
Alignment of Occluded Lines

- The measurements of the occluding line, occluded line and the plane are denoted by ${}^{r}\mathcal{L}$, ${}^{r}\mathcal{L}_{\pi r}$ and ${}^{r}\pi$, respectively (described in the reference frame).
- The transform $\mathbf{R}_{cr}, \mathbf{t}_{cr}$ is refined by aligning ${}^{c}\mathcal{L}_{\pi r}$ with the measurement $T_{cr}({}^{r}\mathcal{L}_{\pi r})$.



Alignment of Occluded Lines

- ${}^{c}\mathcal{L}_{\pi r}$ and $T_{cr}({}^{r}\mathcal{L}_{\pi r})$ are aligned if
 - *R*_{cr} and *t*_{cr} are correctly recovered;
 - ${}^c\pi = T_{cr}({}^r\pi);$
 - ${}^{c}\mathcal{L} = T_{cr}({}^{r}\mathcal{L}).$



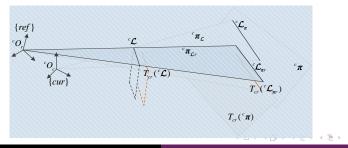
・ロト ・ 同ト ・ ヨト

-

Alignment of Occluded Lines

• The objective function is defined by

$$F(\mathbf{R}_{cr}, \mathbf{t}_{cr}) = \sum_{i=1}^{N_{\mathcal{L}}} \left\{ \|^{c} \mathcal{L}_{\pi ri} - T_{cr}(^{r} \mathcal{L}_{\pi ri}) \|_{2}^{2} + \|^{c} \mathcal{L}_{i} - T_{cr}(^{r} \mathcal{L}_{i}) \|_{2}^{2} \right\} + \sum_{j=1}^{N_{\pi}} \|^{c} \pi_{j} - T_{cr}(^{r} \pi_{j}) \|_{2}^{2}$$
(17)



Sun Qinxuan Line-based Shadow SLAM