Plane-Line-Shadow SLAM

Sun Qinxuan

June 3, 2019

Sun Qinxuan Plane-Line-Shadow SLAM

・ロト ・ 同ト ・ ヨト

< ∃ >

OUTLINE

Problem Formulation

- Parameterization for Planes and Lines
- Shadows of 3D lines on Planes
- 2 Experiments
- 3 Constraint Analysis for Plane-Line-based SLAM
- 4 Computation of Information Matrices

Parameterization for Planes and Lines Shadows of 3D lines on Planes

Problem Formulation

- Plane-line-based map
 - Plane features: $\{\boldsymbol{\pi}_j\}_{j=1,\cdots,N_{\pi}}$.
 - Line features: $\{\mathcal{L}_k\}_{k=1,\dots,N_{\mathcal{L}}}$.

Image: A matching of the second se

Problem Formulation

Experiments Constraint Analysis for Plane-Line-based SLAM Computation of Information Matrices Parameterization for Planes and Lines Shadows of 3D lines on Planes

Problem Formulation

- Observations
 - ${}^{c_i} z_{\pi_i} = [{}^{c_i} n_{\pi_i}^T, {}^{c_i} d_{\pi_i}]^T$ observation of the *j*-th plane in *i*-th camera frame.
 - ${}^{c_i} \boldsymbol{z}_{\mathcal{L}_k} = [{}^{c_i} \tilde{\boldsymbol{u}}_{\mathcal{L}_k}^T, {}^{c_i} \tilde{\boldsymbol{v}}_{\mathcal{L}_k}^T]^T$ observation of the k-th line in *i*-th camera frame.
 - ${}^{c_i} \boldsymbol{z}_{\mathcal{L}_k \pi_j} = [{}^{c_i} \tilde{\boldsymbol{u}}_{\mathcal{L}_k \pi_j}^T, {}^{c_i} \tilde{\boldsymbol{v}}_{\mathcal{L}_k \pi_j}^T]^T$ projections of the observation of the *k*-th line onto the observation of the *j*-th plane in *i*-th camera frame.

Sun Qinxuan Plane-Line-Shadow SLAM

Parameterization for Planes and Lines Shadows of 3D lines on Planes

Problem Formulation

- Problem Formulation
 - Given the observations ${}^{c_i} z_{\pi_j}$, ${}^{c_i} z_{\mathcal{L}_k}$ and ${}^{c_i} z_{\mathcal{L}_k \pi_j}$, find the optimal camera poses $\{\mathbf{R}_{c_ig}, \mathbf{t}_{c_ig}\}_{i=1,\dots,N_c}$ planes $\{\mathbf{\pi}_j\}_{j=1,\dots,N_\pi}$ and lines $\{\mathbf{\mathcal{L}}_k\}_{k=1,\dots,N_{\mathcal{L}}}$ such that (1) is minimized.

$$\sum_{i=1}^{N_{c}} \sum_{j=1}^{N_{\pi}} c_{i} \boldsymbol{e}_{\pi_{j}}^{T} c_{i} \boldsymbol{\Omega}_{\pi_{j}}^{c_{i}} \boldsymbol{e}_{\pi_{j}} + \sum_{i=1}^{N_{c}} \sum_{k=1}^{N_{\mathcal{L}}} c_{i} \boldsymbol{e}_{\mathcal{L}_{k}}^{T} c_{i} \boldsymbol{\Omega}_{\mathcal{L}_{k}}^{c_{i}} \boldsymbol{e}_{\mathcal{L}_{k}}^{c_{i}}$$

$$+ \sum_{i=1}^{N_{c}} \sum_{j=1}^{N_{\pi}} \sum_{k=1}^{N_{\mathcal{L}}} \alpha(i,j,k)^{c_{i}} \boldsymbol{e}_{\mathcal{L}_{k}\pi_{j}}^{T} c_{i} \boldsymbol{\Omega}_{\mathcal{L}_{k}\pi_{j}}^{c_{i}} \boldsymbol{e}_{\mathcal{L}_{k}\pi_{j}}^{c_{i}}$$

$$(1)$$

with

• $\alpha(i,j,k) = 1$ if \mathcal{L}_k and π_j are both observed in camera *i*. Otherwise, $\alpha(i,j,k) = 0.$

Parameterization for Planes and Lines Shadows of 3D lines on Planes

Problem Formulation

- Problem Formulation
 - φ_π(**R**_{cig}, t_{cig}, π_j) and φ_L(**R**_{cig}, t_{cig}, L_k) are plane and line observation models, respectively (introduced in Section 1.1).
 - $c_i \mathbf{\Omega}_{\pi_j}$ and $c_i \mathbf{\Omega}_{\mathcal{L}_k}$ are the information matrices for planes and lines, respectively (introduced in Section 4).
 - $\varphi_{\mathcal{L}\pi}(\mathbf{R}_{c_ig}, t_{c_ig}, \mathcal{L}_k, \pi_j)$ is the shadow observation model (introduced in Section 1.2).
 - $c_i \mathbf{\Omega}_{\mathcal{L}_k \pi_j}$ is the information matrices for line shadows (introduced in Section 1.2).

イロト 不得 とくほ とくほう

Parameterization for Planes and Lines Shadows of 3D lines on Planes

Parameterization for Planes

- A plane equation in 3-space $\Pi_1 X + \Pi_2 Y + \Pi_3 Z + \Pi_4 = 0$ is unaffected by multiplication by a non-zero scalar – a plane has 3 degrees of freedom in 3-space.
- The homogeneous representation of the plane is $\mathbf{\Pi} = [\Pi_1, \Pi_2, \Pi_3, \Pi_4]^T \in \mathbb{P}^3$ in projective space.¹
- Spherically normalizing the homogeneous vector Π yields
 π = Π/ ||Π|| ∈ S³.
- S³ is the 3-sphere in the space \mathbb{R}^4 , which is a Lie group under the operation of quaternion multiplication when its elements are viewed as unit quaternions.

¹R. Hartley and A. Zisserman, "Multiple View Geometry in Computer Vision". Cambridge University Press, 2003, second Edition.

Parameterization for Planes and Lines Shadows of 3D lines on Planes

Minimal Parameterization for Planes

- Since there are four directions in which π can change in an optimization process, but the plane only has three DOFs. An optimizer is free to move the variable off the unit quaternion sphere.
- We use the exponential map from \mathbb{R}^3 to \mathbb{S}^3 : ² ³

$$\exp(\boldsymbol{\zeta}) = \begin{cases} \begin{bmatrix} \frac{1}{\|\boldsymbol{\zeta}\|} \sin(\frac{1}{2}\|\boldsymbol{\zeta}\|) \hat{\boldsymbol{\zeta}}, \sin(\frac{1}{2}\|\boldsymbol{\zeta}\|) \end{bmatrix}^T & \text{if } \boldsymbol{\zeta} \neq 0 \\ [0,0,0,1]^T & \text{if } \boldsymbol{\zeta} = 0 \end{cases}$$
(3)

with $\boldsymbol{\zeta} \in \mathbb{R}^3$ and $\hat{\boldsymbol{\zeta}} = \boldsymbol{\zeta} / \| \boldsymbol{\zeta} \|$.

• A plane $\pi \in \mathbb{S}^3$ is updated by an increment $\zeta \in \mathbb{R}^3$ using the quaternion multiplication

$$\boldsymbol{\pi}' = \exp(\boldsymbol{\zeta}) \circ \boldsymbol{\pi} \tag{4}$$

²M. Kaess, "Simultaneous localization and mapping with infinite planes", 2015 IEEE International Conference on Robotics and Automation (ICRA), 2015, pp. 4605-4611.

³Grassia, and F. Sebastian . "Practical Parameterization of Rotations Using the Exponential Map". Journal of Graphics Tools 3.3(1998): 29-48.

Parameterization for Planes and Lines Shadows of 3D lines on Planes

Observation Model

• Plane observation model

$$\varphi_{\pi}(\boldsymbol{R}_{cg}, \boldsymbol{t}_{cg}, \boldsymbol{\pi}) = \begin{bmatrix} \boldsymbol{R}_{cg} & \boldsymbol{0} \\ -\boldsymbol{t}_{cg}^{T} \boldsymbol{R}_{cg} & \boldsymbol{1} \end{bmatrix} \cdot \begin{bmatrix} \boldsymbol{n} \\ \boldsymbol{d} \end{bmatrix}$$
(5)

with

$$\begin{bmatrix} \mathbf{n} \\ d \end{bmatrix} = \frac{\mathbf{\pi}}{\pi_1^2 + \pi_2^2 + \pi_3^2}$$
(6)

and $\boldsymbol{\pi} = [\pi_1, \pi_2, \pi_3, \pi_4]^T$.

- ^{*c*}**n** and ^{*c*}*d* are the unit normal of the plane and the vertical distance from the origin to the plane, respectively, expressed in the camera coordinate frame.
- $\mathbf{R}_{cg} \in \mathbb{SO}(3)$ and $\mathbf{t}_{cg} \in \mathbb{R}^3$ are the rotation matrix and the translation vector from the global coordinate frame to the camera coordinate frame, respectively.

Parameterization for Planes and Lines Shadows of 3D lines on Planes

Plücker Coordinates of 3D Lines

- The Plücker coordinates of a 3D line are denoted by
 - $\mathcal{L} = [\mathbf{u}^T, \mathbf{v}^T]^T \in \mathbb{P}^5$ and satisfy the Plücker constraint $\mathbf{u}^T \mathbf{v} = 0$.
- $u \in \mathbb{R}^3$ is normal to the interpretation plane $\pi_{\mathcal{L}}$ containing the line \mathcal{L} .
- $v \in \mathbb{R}^3$ is the line direction.
- The vertical distance from the origin to the line is computed by ||u||/||v||.

Parameterization for Planes and Lines Shadows of 3D lines on Planes

Orthonormal Representation for 3D Lines

- The orthonormal representation ⁴ enables the local update of the Plücker coordinates using the minimum number of parameters.
- Any (projective) 3D line can be represented by ⁵

$$(\boldsymbol{Q}, \boldsymbol{W}) \in \mathbb{SO}(3) \times \mathbb{SO}(2) \tag{7}$$

(Q, W) is the orthonomal representation of a 3D line.

⁴Bartoli, Adrien . "On the Non-Linear Optimization of Projective Motion Using Minimal Parameters". 7th European Conference on Computer Vision Springer-Verlag, 2002.

⁵Bartoli, Adrien , and P. Sturm . "Structure-from-motion using lines: Representation, triangulation, and bundle adjustment". Computer Vision and Image Understanding 100.3(2005):416-441.

Parameterization for Planes and Lines Shadows of 3D lines on Planes

Relating Plücker coordinates and orthonormal representation ⁶

• The 3×2 matrix $[\boldsymbol{u}|\boldsymbol{v}]$ can be factored as

$$[\boldsymbol{u}|\boldsymbol{v}] = \boldsymbol{Q}\boldsymbol{\Sigma} \tag{8}$$

with

$$Q = \begin{bmatrix} \frac{u}{\|u\|} & \frac{v}{\|v\|} & \frac{u \times v}{\|u \times v\|} \end{bmatrix} \in \mathbb{SO}(3)$$
$$\Sigma = \begin{bmatrix} \|u\| & 0\\ 0 & \|v\|\\ 0 & 0 \end{bmatrix}$$
(9)

⁶Bartoli, Adrien , and P. Sturm . "Structure-from-motion using lines: Representation, triangulation, and bundle adjustment". Computer Vision and Image Understanding 100.3(2005):416-441.

Parameterization for Planes and Lines Shadows of 3D lines on Planes

Relating Plücker coordinates and orthonormal representation ⁷

• Set

$$\boldsymbol{W} = \begin{bmatrix} \boldsymbol{\sigma}_1 & -\boldsymbol{\sigma}_2 \\ \boldsymbol{\sigma}_2 & \boldsymbol{\sigma}_1 \end{bmatrix} \in \mathbb{SO}(2) \tag{10}$$

with

$$\sigma_{1} = \frac{\|\boldsymbol{u}\|}{\sqrt{\|\boldsymbol{u}\|^{2} + \|\boldsymbol{v}\|^{2}}}$$

$$\sigma_{2} = \frac{\|\boldsymbol{v}\|}{\sqrt{\|\boldsymbol{u}\|^{2} + \|\boldsymbol{v}\|^{2}}}$$
(11)

Parameterization for Planes and Lines Shadows of 3D lines on Planes

Relating Plücker coordinates and orthonormal representation ⁸

- The minimum four line parameters are denoted by $\boldsymbol{\eta} = [\boldsymbol{\theta}^T, \boldsymbol{\theta}]^T$ where $\boldsymbol{\theta} \in \mathbb{R}^3$ and $\boldsymbol{\theta} \in \mathbb{R}$.
- **Q** and **W** are updated by

$$Q = Q \exp([\boldsymbol{\theta}]_{\times})$$

$$W = W \exp([\boldsymbol{\theta}]_{\times})$$
(12)

where $[\boldsymbol{\theta}]_{\times}$ and $[\boldsymbol{\theta}]_{\times}$ are the 3 × 3 and 2 × 2 skew symmetric matrices corresponding to $\boldsymbol{\theta}$ and $\boldsymbol{\theta}$, respectively.

⁸Bartoli, Adrien , and P. Sturm . "Structure-from-motion using lines: Representation, triangulation, and bundle adjustment". Computer Vision and Image Understanding 100.3(2005):416-441.

Parameterization for Planes and Lines Shadows of 3D lines on Planes

Relating Plücker coordinates and orthonormal representation ⁹

• Converting from the orthnormal representation (*Q*, *W*) to the Plücker coordinates *L* by

$$\mathcal{L} = [\sigma_1 \boldsymbol{q}_1^T, \sigma_2 \boldsymbol{q}_2^T]^T \tag{13}$$

where q_i is the *i*-th column of Q.

⁹Bartoli, Adrien , and P. Sturm . "Structure-from-motion using lines: Representation, triangulation, and bundle adjustment". Computer Vision and Image Understanding 100.3(2005):416-441.

Parameterization for Planes and Lines Shadows of 3D lines on Planes

Observation Model

• Line observation model

$$\varphi_{\mathcal{L}}(\boldsymbol{R}_{cg}, \boldsymbol{t}_{cg}, \boldsymbol{\mathcal{L}}) = \begin{bmatrix} \boldsymbol{R}_{cg} & [\boldsymbol{t}_{cg}] \times \boldsymbol{R}_{cg} \\ \boldsymbol{0} & \boldsymbol{R}_{cg} \end{bmatrix} \cdot \begin{bmatrix} \tilde{\boldsymbol{u}} \\ \tilde{\boldsymbol{v}} \end{bmatrix}$$
(14)

where

$$\begin{bmatrix} \tilde{\boldsymbol{u}} \\ \tilde{\boldsymbol{v}} \end{bmatrix} = \frac{\boldsymbol{\mathcal{L}}}{\|\boldsymbol{v}\|} \tag{15}$$

イロト イロト イヨト

- $\mathbf{R}_{cg} \in \mathbb{SO}(3)$ and $t_{cg} \in \mathbb{R}^3$ are the rotation matrix and the translation vector from the global coordinate frame to the camera coordinate frame, respectively.
- $[t_{cg}]_{\times}$ is the skew symmetric matrix corresponding to t_{cg} .

Parameterization for Planes and Lines Shadows of 3D lines on Planes

Generation of Line Shadows

- The origin of the camera frame w.r.t. the global frame is $O_c = t_{gc}$.
- The plane $\boldsymbol{\pi}_{\mathcal{L}}$ joining the line $\boldsymbol{\mathcal{L}}$ and \boldsymbol{O}_c is calculated by ¹⁰

$$\boldsymbol{\pi}_{\mathcal{L}} \sim \boldsymbol{L}^* \cdot \tilde{\boldsymbol{O}}_c = \begin{bmatrix} [\boldsymbol{v}]_{\times} \boldsymbol{t}_{gc} + \boldsymbol{u} \\ -\boldsymbol{u}^T \boldsymbol{t}_{gc} \end{bmatrix}$$
(16)

where ~ denotes the equality up to scale and $\tilde{O}_c = [t_{gc}^T, 1]^T$ is the homogeneous coordinates of the origin.

¹⁰R. Hartley and A. Zisserman, "Multiple View Geometry in Computer Vision". Cambridge University Press, 2003, second Edition.

Parameterization for Planes and Lines Shadows of 3D lines on Planes

Generation of Line Shadows

• L^* is the dual Plücker matrix associated with \mathcal{L} which is computed by 11

$$\boldsymbol{L}^* = \begin{bmatrix} [\boldsymbol{\nu}]_{\times} & \boldsymbol{u} \\ -\boldsymbol{u}^T & \boldsymbol{0} \end{bmatrix}$$
(17)

¹¹R. Hartley and A. Zisserman, "Multiple View Geometry in Computer Vision". Cambridge University Press, 2003, second Edition.

Parameterization for Planes and Lines Shadows of 3D lines on Planes

Generation of Line Shadows

The occluded line on the plane π corresponding to the occluding line L is denoted by L_π. The corresponding dual Plücker matrix L^{*}_π is calculated by

$$\boldsymbol{L}_{\boldsymbol{\pi}}^{*} \sim \boldsymbol{\pi} \boldsymbol{\pi}_{\mathcal{L}}^{T} - \boldsymbol{\pi}_{\mathcal{L}} \boldsymbol{\pi}^{T} = \begin{bmatrix} [\boldsymbol{\nu}_{\boldsymbol{\pi}}]_{\times} & \boldsymbol{u}_{\boldsymbol{\pi}} \\ -\boldsymbol{u}_{\boldsymbol{\pi}}^{T} & \boldsymbol{0} \end{bmatrix}$$
(18)

$$u_{\pi} = -d([v]_{\times}t_{gc} + u) - nt_{gc}^{T}u$$

$$v_{\pi} = -[n]_{\times}[v]_{\times}t_{gc} + [u]_{\times}n$$
(19)

• The Plücker coordinates $\mathcal{L}_{\pi} = [\boldsymbol{u}_{\pi}^T, \boldsymbol{v}_{\pi}^T]^T$.

Parameterization for Planes and Lines Shadows of 3D lines on Planes

Observation Model

• Shadow observation model

$$\varphi_{\mathcal{L}\pi}(\boldsymbol{R}_{cg}, \boldsymbol{t}_{cg}, \mathcal{L}, \boldsymbol{\pi}) = \begin{bmatrix} \boldsymbol{R}_{cg} & [\boldsymbol{t}_{cg}] \times \boldsymbol{R}_{cg} \\ \boldsymbol{0} & \boldsymbol{R}_{cg} \end{bmatrix} \cdot \begin{bmatrix} \tilde{\boldsymbol{u}}_{\pi} \\ \tilde{\boldsymbol{v}}_{\pi} \end{bmatrix}$$
(20)

where

$$\begin{bmatrix} \tilde{\boldsymbol{u}}_{\pi} \\ \tilde{\boldsymbol{v}}_{\pi} \end{bmatrix} = \frac{\mathcal{L}_{\pi}}{\|\boldsymbol{v}_{\pi}\|}$$
(21)

<ロト < 聞 > < 臣 > < 臣 > .

Parameterization for Planes and Lines Shadows of 3D lines on Planes

Error Propagation from Lines and Planes to Shadows

• The covariance of the plane and line parameters are obtained by the pseudoinverse of the information matrices (computed in Section 4).

$$\boldsymbol{C}_{\pi} = \boldsymbol{\Omega}_{\pi}^{\dagger} = \begin{bmatrix} \boldsymbol{C}_{nn} & \boldsymbol{C}_{nd} \\ \boldsymbol{C}_{nd}^{T} & \boldsymbol{C}_{dd} \end{bmatrix}$$
(22)

$$\boldsymbol{C}_{\mathcal{L}} = \boldsymbol{\Omega}_{\mathcal{L}}^{\dagger} = \begin{bmatrix} \boldsymbol{C}_{uu} & \boldsymbol{C}_{uv} \\ \boldsymbol{C}_{uv}^{T} & \boldsymbol{C}_{vv} \end{bmatrix}$$
(23)

ヘロト ヘ戸ト ヘヨト

• The covariance of the line shadow is computed by

$$C_{\mathcal{L}\pi} = \frac{\partial \mathcal{L}_{\pi}}{\partial \pi} C_{\pi} \frac{\partial \mathcal{L}_{\pi}}{\partial \pi}^{T} + \frac{\partial \mathcal{L}_{\pi}}{\partial \mathcal{L}} C_{\mathcal{L}} \frac{\partial \mathcal{L}_{\pi}}{\partial \mathcal{L}}^{T}$$

$$= \begin{bmatrix} d^{2}C_{uu} + C_{dd}uu^{T} & dC_{uu}[\mathbf{n}]_{\times}^{T} + uC_{nd}^{T}[\mathbf{u}]_{\times} \\ d[\mathbf{n}]_{\times}C_{uu} + [\mathbf{u}]_{\times}C_{nd}u^{T} & [\mathbf{n}]_{\times}C_{uu}[\mathbf{n}]_{\times}^{T} + [\mathbf{u}]_{\times}C_{nn}[\mathbf{u}]_{\times}^{T} \end{bmatrix}$$

$$\Omega_{\mathcal{L}\pi} = C_{\mathcal{L}\pi}^{\dagger}$$
(24)
$$(24)$$

Experiments - Fr3/cabinet

2

Sun Qinxuan Plane-Line-Shadow SLAM

Experiments - Fr2/str_near

イロト イ理ト イヨト イヨト

2

Relative Pose Error

Experiments - Fr1/xyz

イロト イ理ト イヨト イヨト

2

Relative Pose Error

Experiments - Fr1/rpy¹²

Scene

¹²groundtruth辅助数据关联

Sun Qinxuan

Plane-Line-Shadow SLAM

イロト イポト イヨト

Э

Experiments - Fr1/desk¹³

Scene

¹³groundtruth辅助数据关联

Sun Qinxuan

Plane-Line-Shadow SLAM

イロト イポト イヨト

Э

Experiments - Fr2/xyz¹⁴

¹⁴groundtruth辅助数据关联

Sun Qinxuan

Plane-Line-Shadow SLAM

< □ > < 同 > < 三

Э

Experiments - Fr2/rpy¹⁵

Scene

¹⁵groundtruth辅助数据关联

Sun Qinxuan

Plane-Line-Shadow SLAM

< □ > < 同 > < 三

Э

Experiments - Fr3/office¹⁶

Scene

¹⁶groundtruth辅助数据关联

Sun Qinxuan

< @ > <

1

Constraint Analysis for Planes¹⁷

• The error vector for plane observation is

$$\boldsymbol{e}_{\pi} = \begin{bmatrix} c \boldsymbol{n} \\ c \boldsymbol{d} \end{bmatrix} - \begin{bmatrix} \boldsymbol{R} & 0 \\ -\boldsymbol{t}^{T} \boldsymbol{R} & 1 \end{bmatrix} \begin{bmatrix} \boldsymbol{n} \\ \boldsymbol{d} \end{bmatrix}$$
(26)

• The Jacobian matrix of e_{π} w.r.t. the minimal motion parameters $\boldsymbol{\xi} = [t^T, \boldsymbol{\omega}^T]^T$ is calculated.

$$\frac{\partial \boldsymbol{e}_{\boldsymbol{\pi}}}{\partial \boldsymbol{\xi}} = \begin{bmatrix} 0 & [\boldsymbol{R}\boldsymbol{n}]_{\times} \\ (\boldsymbol{R}\boldsymbol{n})^T & -\boldsymbol{t}^T [\boldsymbol{R}\boldsymbol{n}]_{\times} \end{bmatrix}$$
(27)

• The null space of $\frac{\partial e_{\pi}}{\partial \xi}$ is

$$\operatorname{null}\left(\frac{\partial \boldsymbol{e}_{\pi}}{\partial \boldsymbol{\xi}}\right) = \begin{bmatrix} \mu_1 \boldsymbol{t}_1 + \mu_2 \boldsymbol{t}_2 \\ \mu_3(\boldsymbol{R}\boldsymbol{n}) \end{bmatrix}$$
(28)

with t_1 and t_1 are orthogonal vectors spanning the plane vertical to Rn and $\mu_1, \mu_2, \mu_3 \in \mathbb{R}$.

 17 Q. Sun, J. Yuan, X. Zhang and F. Duan, Plane-Edge-SLAM: Seamless Fusion of Planes and Edges for SLAM in Indoor Environments.

Constraint Analysis for Planes¹⁸

• For N_{π} plane observations

$$\sum_{j=1}^{N_{\pi}} \left(\frac{\partial \boldsymbol{e}_{\pi j}}{\partial \boldsymbol{\xi}} d\boldsymbol{\xi} \right)^{T} \boldsymbol{\Omega}_{\pi j} \left(\frac{\partial \boldsymbol{e}_{\pi j}}{\partial \boldsymbol{\xi}} d\boldsymbol{\xi} \right) = d\boldsymbol{\xi}^{T} \boldsymbol{\Psi}_{\pi} d\boldsymbol{\xi}$$
(29)

$$\Psi_{\pi} = \sum_{j=1}^{N_{\pi}} \frac{\partial \boldsymbol{e}_{\pi j}}{\partial \xi}^{T} \boldsymbol{\Omega}_{\pi j} \frac{\partial \boldsymbol{e}_{\pi j}}{\partial \xi}$$
(30)

- Two degenerate cases:
 - 1-DoF unconstrained: $\exists e \text{ such that } (\mathbf{Rn}_j)^T e = 0, \forall j$ unconstrained motion: $\boldsymbol{\xi} = [\boldsymbol{\mu} e^T, \boldsymbol{0}^T]^T$.
 - 3-DoF unconstrained: $\exists e \text{ such that } (\mathbf{Rn}_j) \times e = 0, \forall j$ unconstrained motion: $\boldsymbol{\xi} = [(\mu_1 t_1 + \mu_2 t_2)^T, \mu_3 e^T]^T$.

¹⁸Q. Sun, J. Yuan, X. Zhang and F. Duan, Plane-Edge-SLAM: Seamless Fusion of Planes and Edges for SLAM in Indoor Environments.

Constraint Analysis for Line

• The error vector for line observation is

$$\boldsymbol{e}_{\mathcal{L}} = \begin{bmatrix} {}^{c} \tilde{\boldsymbol{u}} \\ {}^{c} \tilde{\boldsymbol{v}} \end{bmatrix} - \begin{bmatrix} \boldsymbol{R} & [\boldsymbol{t}]_{\times} \boldsymbol{R} \\ \boldsymbol{0} & \boldsymbol{R} \end{bmatrix} \begin{bmatrix} \tilde{\boldsymbol{u}} \\ \tilde{\boldsymbol{v}} \end{bmatrix}$$
(31)

• The Jacobian matrix of $e_{\mathcal{L}}$ w.r.t. $\boldsymbol{\xi}$ is

$$\frac{\partial \boldsymbol{e}_{\mathcal{L}}}{\partial \boldsymbol{\xi}} = \begin{bmatrix} [\boldsymbol{R}\boldsymbol{\tilde{\nu}}]_{\times} & [\boldsymbol{R}\boldsymbol{\tilde{u}}]_{\times} + [\boldsymbol{t}]_{\times} [\boldsymbol{R}\boldsymbol{\tilde{\nu}}]_{\times} \\ 0 & [\boldsymbol{R}\boldsymbol{\tilde{\nu}}]_{\times} \end{bmatrix}$$
(32)

• The null space of $\frac{\partial e_{\mathcal{L}}}{\partial \boldsymbol{\xi}}$ is

$$\operatorname{null}\left(\frac{\partial \boldsymbol{e}_{\mathcal{L}}}{\partial \boldsymbol{\xi}}\right) = \mu_1 \begin{bmatrix} \boldsymbol{R} \tilde{\boldsymbol{u}} \\ \boldsymbol{R} \tilde{\boldsymbol{v}} \end{bmatrix} + \mu_2 \begin{bmatrix} \boldsymbol{R} \tilde{\boldsymbol{v}} \\ \boldsymbol{0} \end{bmatrix}$$
(33)

with $\mu_1, \mu_2 \in \mathbb{R}$.

Constraint Analysis for Lines

• For $N_{\mathcal{L}}$ line observations

$$\sum_{k=1}^{N_{\mathcal{L}}} \left(\frac{\partial \boldsymbol{e}_{\mathcal{L}k}}{\partial \boldsymbol{\xi}} d\boldsymbol{\xi} \right)^{T} \boldsymbol{\Omega}_{\mathcal{L}k} \left(\frac{\partial \boldsymbol{e}_{\mathcal{L}k}}{\partial \boldsymbol{\xi}} d\boldsymbol{\xi} \right) = d\boldsymbol{\xi}^{T} \boldsymbol{\Psi}_{\mathcal{L}} d\boldsymbol{\xi}$$
(34)

$$\Psi_{\mathcal{L}} = \sum_{k=1}^{N_{\mathcal{L}}} \frac{\partial \boldsymbol{e}_{\mathcal{L}k}}{\partial \boldsymbol{\xi}}^{T} \boldsymbol{\Omega}_{\pi j} \frac{\partial \boldsymbol{e}_{\mathcal{L}k}}{\partial \boldsymbol{\xi}}$$
(35)

- Two degenerate cases:
 - 1-DoF unconstrained: $\exists \boldsymbol{e} \text{ such that } (\boldsymbol{R} \tilde{\boldsymbol{v}}_k) \times \boldsymbol{e} = 0, \forall k$ unconstrained motion: $\boldsymbol{\xi} = [\boldsymbol{\mu} \boldsymbol{e}^T, 0]^T$.
 - 2-DoF unconstrained: There is only one line. unconstrained motion: $\boldsymbol{\xi} = \mu_1 [\tilde{\boldsymbol{u}}^T, \tilde{\boldsymbol{v}}^T]^T + \mu_2 [\tilde{\boldsymbol{v}}^T, \boldsymbol{0}^T]^T$.

Degenerate Cases for Planes and Lines

- Degenerate cases for planes and lines:
 - 1-DoF unconstrained:

 $\exists \boldsymbol{e} \text{ such that } (\boldsymbol{R}\boldsymbol{n}_j)^T \boldsymbol{e} = 0, \forall j \text{ and } (\boldsymbol{R}\tilde{\boldsymbol{v}}_k) \times \boldsymbol{e} = 0, \forall k.$ unconstrained motion: $\boldsymbol{\xi} = [\boldsymbol{\mu}\boldsymbol{e}^T, 0]^T.$

• 1-DoF unconstrained:

There is only one line and $\exists e$ such that $(\mathbf{Rn}_j) \times \mathbf{e} = 0, \forall j$. unconstrained motion: $\boldsymbol{\xi} = \boldsymbol{\mu} [\tilde{\boldsymbol{u}}^T, \tilde{\boldsymbol{v}}^T]^T$.

▲ 伊 ▶ ▲ 臣 ▶

Maximum Likelihood for Plane Fitting

イロト 不得 とくほ とくほう