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1 Plane and Line Extraction

The planes are extracted using STING-based plane extraction method pro-
posed in [1] and are denoted by π = [nT , d]T , where n is the unit normal
and d is the vertical distance from the origin to the plane. The mean and
covariance of the RGB values corresponding to the points on the plane π are
computed and denoted by rπ and Sπ, respectively.

The lines are detected in the image by LSD algorithm [2] and projected
to the camera coordinate system. L = [uT ,vT ]T represent the parameters
of the line feature, where u ∈ R3 is a vector with its direction orthogonal to
the plane defined by the join of the line and the origin, and its norm equal
to the vertical distance from the origin to the line, and v ∈ S2 is the unit
direction vector of the line.

The coordinate system in which the features are described is denoted by
the subscript. Specifically, the current and reference frames are denoted by
the subscripts c and r, respectively.

2 Plane-Line Association Graph (PLAG)

The plane association graph (PAG) is proposed in [1] to set up correspon-
dences between planes extracted from two successive scans. The PAG is a
graph built for each scan, wherein nodes represent the extracted planes and
edges represent the geometric relationships between the planes. In this sec-
tion, we extend the PAG to associate plane and line features simultaneously,
which yields the plane-line association graph (PLAG).

2.1 Construction of PLAG

For the set of planes {πi}i=1,··· ,Nπ and lines {Lj}j=1,··· ,NL
extracted from

one frame, the PLAG G = (V,E) is built with V representing the set of
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vertices and E the set the edges. There are two different kinds of vertices
in V , i.e., the plane vertex vπ,i = πi, i = 1, · · · , Nπ and the line vertex
vL,j = Lj, j = 1, · · · , NL. Accordingly, E also includes two types of edges:
plane-plane edge eπ,ik and line-plane edge eL,jk. The plane-plane edge eπ,ik
connects two plane vertices and the line-plane edge eL,jk connects a line
vertex and a plane vertex.

eπ,ik = (ωπ,ik, απ,ik, dπ,ik) , i, k ∈ {1, · · · , Nπ}, i 6= k, (1)

eL,jk = (ωL,jk, αL,jk, dL,jk) , j ∈ {1, · · · , NL}, k ∈ {1, · · · , Nπ}. (2)

The two types of edges eπ,ik and eL,jk encode the geometric relationships
between two planes and between a line and a plane , respectively. The
geometric relationships can be classified into two categories: parallel and
non-parallel, which are indicated by the variables ωπ,ik and ωL,jk for eπ,ik and
eL,jk, respectively.

ωπ,ik =

{
parallel, if απ,ik < δrad;

non− parallel, otherwise.
(3)

ωL,jk =

{
parallel, if αL,ij < δrad;

non− parallel, otherwise.
(4)

απ,ik represents the angle between ni and nk and αL,jk the angle between vj
and nk.

απ,ik = arccos
(
nT
i nk

)
, (5)

αL,jk = arccos
(
vTj nk

)
. (6)

dπ,ik and dL,jk are defined, respectively, by

dπ,ik =

{
|di − dk|, if ωπ,ik = parallel;

0, otherwise.
(7)

dL,jk =

{
|nT

k [vj]×uj + dk|, if ωL,jk = parallel;

0, otherwise.
(8)

According to (7) and (8), when two planes (a line and a plane) are parallel
to each other, dπ,ik (dL,jk) represent the vertical distance between the two
planes (the line and plane).
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2.2 Feature Matching using PLAG

For the two feature sets {πci,Lcj}i=1,··· ,Nπc,j=1,··· ,NLc
and {πrm,Lrn}m=1,··· ,Nπr,n=1,··· ,NLr

extracted from the current and reference scans, respectively, two PLAGs
Gc = (Vc, Ec) and Gr = (Vr, Er) are constructed, respectively, using the
method proposed in Section 2.1. Then, the features from two scans are as-
sociated by calculating the similarities of vertices from Gc and Gr.

First, the relationships between two plane-plane edges and between two
plane-line edges are defined, respectively, aseπc,ik = eπr,ml if

ωπc,ik = ωπr,ml and |απc,ik − απr,ml| < δrad

and |dπc,ik − dπr,ml| < δdist,

eπc,ik 6= eπr,ml otherwise.

(9)

eLc,jk = eLr,nl if
ωLc,jk = ωLr,nl and |αLc,jk − αLr,nl| < δrad

and |dLc,jk − dLr,nl| < δdist,

eLc,jk 6= eLr,nl otherwise.

(10)

Then, the similarity for two vertices of the same type is defined for plane
vertices and line vertices, respectively. Specifically, for two plane vertices
vπc,i ∈ Vc and vπr,m ∈ Vr, the similarity sπ(vπc,i, vπr,m) is defined by

sπ(vπc,i, vπr,m) = sπ,col(vπc,i, vπr,m) + sπ,geo(vπc,i, vπr,m), (11)

where sπ,col(vπc,i, vπr,m) and sπ,geo(vπc,i, vπr,m) represent the color and geomet-
ric similarities, respectively. The color similarity sπ,col(vπc,i, vπr,m) is defined
as the Bhattacharyya distance between the color distributions of two planes.

sπ,col(vπc,i, vπr,m) =
1

8
(rπc,i − rπr,m)T S−1π (rπc,i − rπr,m)+

1

2
ln

(
|Sπ|√

|Sπc,i| · |Sπr,m|

)
,

(12)
where Sπ = 1

2
Sπc,i + Sπr,m. The geometric similarity sπ,geo(vπc,i, vπr,m) is

calculated by the sum of color similarities between the vertices connected to
vπc,i and vπr,m, respectively, by similar edges defined in (9).

sπ,geo(vπc,i, vπr,m) =
1

|Iim|
∑

(k,l)∈Iim

sπ,col(vπc,k, vπr,l). (13)

Iim is a set of index pairs and is defined by

Iim = {(k, l)|eπc,ik = eπr,ml, k ∈ 1, · · · , Nπc, k 6= i, l ∈ 1, · · · , Nπr, l 6= m.} .
(14)
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And |Iim| represents the number of index pairs in Iim.
For two line vertices vLc,j ∈ Vc and vLr,n ∈ Vr, the similarity sL(vLc,j, vLr,n)

is defined by
sL(vLc,j, vLr,n) = sL,geo(vLc,j, vLr,n), (15)

where the geometric similarity sL,geo(vLc,j, vLr,n) is calculated by the sum
of color similarities between the plane vertices connected to vLc,j and vLr,n,
respectively, by similar edges defined by (10).

sL,geo(vLc,j, vLr,n) =
1

|Ijn|
∑

(k,l)∈Ijn

sπ,col(vπc,k, vπr,l). (16)

Ijn is a set of index pairs and is defined by

Ijn = {(k, l)|eLc,jk = eLr,nl, k ∈ 1, · · · , Nπc, l ∈ 1, · · · , Nπr.} . (17)

And |Ijn| represents the number of index pairs in Ijn.
Each pair of planes and lines from two frames is examined by the similar-

ities (11) and (15), respectively, to find correspondence between them.

3 plane-line-VO

In this section, the plane-line-VO is proposed to estimate the 6-DoF RGB-
D camera pose R and t. For RGB-D sensors, plane features are more stably
extracted than line features because the lines are normally detected along
the edges of objects, where both the RGB and depth measurements are
more noisy than those on flat surfaces [3] [4]. Therefore, we first compute
the camera motion using parameters of the associated plane features, as in
[1]. However, the quantity of planes extracted from the scan is relatively
small and it frequently occurs that estimation of the camera pose cannot be
fully constrained. In [1], the degenerate cases are detected according to the
spatial configuration of the plane features and a STING-based scan matching
algorithm is proposed to fully constrain the motion. Nevertheless, the scan
matching is an iterative process and might be trapped in a local minimum if
the camera moves fast. In this section, when plane features are insufficient
to constrain the motion estimation, we use the line features together with
the planes to obtain an accurate and robust result.

The associated plane and line pairs from two frames are denoted by {πci, πri}i=1,··· ,Nπ
and {Lcj,Lrj}j=1,··· ,NL

, respectively. As presented in [1], the rotation R ∈
SE(3) and translation t ∈ R3 of the camera that best align the matched
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planes are obtained by minimizing (18) and (19), respectively.

JπR(R) =
Nπ∑
i=1

‖nci −Rnri‖2, (18)

Jπt(t) =
Nπ∑
i=1

(
dci − (dri − nT

cit)
)2
. (19)

To distinguish the degenerate cases when using plane features, a matrix
H =

∑Nπ
i=1nrin

T
ci is defined and the singular value decomposition (SVD)

is performed for H .

H = QrΛQT
c = λ1qr1q

T
c1 + λ2qr2q

T
c2 + λ3qr3q

T
c3, (20)

where Qr = [qr1, qr2, qr3] and Qc = [qc1, qc2, qc3] are orthonormal matrices,
and Λ = diag{λ1, λ2, λ3}, λ1 ≥ λ2 ≥ λ3. Three kinds of cases, i.e., one
constrained case and two degenerate cases, can be distinguished according
to the singularity values of H .

3.1 6-DoF Constraint Case

If H is nonsingular, i.e., λ1 ≥ λ2 ≥ λ3 > 0, the rotation that minimizes
(18) can be calculated by

R̂ = QcQ
T
r . (21)

And the translation that minimize (19) can be obtained through the least-
squares method.

t̂ = (AT
πAπ)−1AT

πdπ, (22)

where

Aπ =

 nT
c1
...

nT
cNπ

 ,dπ =

 dr1 − dc1
...

drNπ − dcNπ

 . (23)

3.2 5-DoF Constraint Case

If λ1 ≥ λ2 > λ3 = 0, then {nci}i=1,··· ,Nπ ({nri}i=1,··· ,Nπ) are coplanar and

vertical to the vector qc3 (qr3). In this case, R̂ is computed by

R̂ =

{
QcQ

T
r if det(QcQ

T
r ) = 1;

Q′cQ
T
r if det(QcQ

T
r ) = −1.

(24)

where Q′c = [qc1, qc2,−qc3].
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The translation vector t̂ cannot be directly solved by (22) because det(AT
πAπ) =

0. In this case, the null space of the matrix Aπ can be represented by

null(Aπ) = ηqc3, η ∈ R. (25)

As a result, the translation along qc3 cannot be constrained by the planes.
In this case, to fully constrain the translation, the cost function for the
translation can be defined as

Jt(t) = Jπt(t) + JLt(t), (26)

with

JLt(t) =

NL∑
j=1

wj‖ucj − (R̂urj + [vcj]×t)‖2. (27)

The weight wj is computed by

wj = ‖vcj × qc3‖. (28)

Note that, for t ∈ null(Aπ), the line vertical to t provide the largest con-
straint, which is assigned the largest weight according to (28). Then, the
least-squares solution to the translation is

t̂ = (ATWA)−1ATWd, (29)

where

A =

[
Aπ

AL

]
,dπ =

[
dπ
dL

]
, (30)

AL =

 [vc1]×
...

[vcNL ]×

 ,dL =

 R̂urj − ucj
...

R̂urNL − ucNL

 , (31)

W =


INπ

w1I3

. . .

wNLI3

 . (32)

In is an n-dimensional identity matrix.
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3.3 3-DoF Constraint Case

If λ1 > λ2 = λ3 = 0, then {nci}i=1,··· ,Nπ ({nri}i=1,··· ,Nπ) are colinear and
are along the direction of qc1 (qr1).

In this case, the rotation about qc1 cannot be constrained only by planes,
and there exist infinite rotation matrices that can minimize (18). To obtain
a unique solution, the cost function for the rotation is defined as

JR(R) = JπR(R) + JLR(R), (33)

JLR(R) =

NL∑
j=1

‖vcj −Rvrj‖2. (34)

Similarly, define a matrix HL =
∑Nπ

i=1nrin
T
ci+

∑NL
j=1 vrjv

T
cj and compute the

SVD as

HL = QLrΛLQ
T
Lc = λL1qLr1q

T
Lc1 + λL2qLr2q

T
Lc2 + λL3qLr3q

T
Lc3, (35)

where QLr = [qLr1, qLr2, qLr3] and QLc = [qLc1, qLc2, qLc3] are orthonormal
matrices, and ΛL = diag{λL1, λL2, λL3}, λL1 ≥ λL2 ≥ λL3. Then, the rotation
that minimizes (33) is calculated by

R̂ = QLcQ
T
Lr. (36)

Similar to the 5-DoF case, the translation cannot be directly solved by (22),
and in this case, the null space of the matrix Aπ can be represented by

null(Aπ) = η2qc2 + η3qc3, η2, η3 ∈ R. (37)

The cost function for the translation is the same as (26), and the weight wj
is computed by

wj =
1

2
(‖vcj × qc2‖+ ‖vcj × qc3‖) . (38)

And the optimal solution to the translation is computed as in (29).
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0.0 (a) 5-DoF  case (b) 5-DoF  case (c) 5-DoF  case (d) 3-DoF  case

Figure 1: The weight assigned to each line feature are shown by a color map.

Table 1: Comparison of RPE RMSE.
fr1/desk fr2/xyz fr3/cabinet fr3/str ntex far

plane-seg-VO – 0.005m/0.36deg 0.034m/2.04deg –
Prob-RGBD-VO 0.023m/1.70deg – 0.039m/1.80deg 0.019m/0.70deg
Canny-VO 0.031m/1.92deg 0.004m/0.31deg 0.036m/1.63deg 0.027m/0.59deg
STING-VO 0.025m/1.90deg 0.004m/0.34deg 0.011m/1.02deg 0.014m/0.83deg
plane-line-VO 0.022m/1.68deg 0.004m/0.31deg 0.031m/1.30deg 0.012m/0.50deg

Table 2: Comparison of ATE RMSE.
fr1/desk fr2/xyz fr3/cabinet fr3/str ntex far

Prob-RGBD-VO 0.040m – 0.200m 0.054m
Canny-VO 0.044m 0.008m 0.057m 0.031m
STING-VO 0.041m 0.010m 0.070m 0.040m
plane-line-VO 0.040m 0.008m 0.056m 0.027m
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(d) RPE on fr2/xyz
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Figure 2: .
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