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RGB-D SLAM in Indoor Environments With
STING-Based Plane Feature Extraction

Qinxuan Sun , Jing Yuan , Member, IEEE, Xuebo Zhang , Member, IEEE, and Fengchi Sun

Abstract—In this paper, the RGB-D camera-based simul-
taneous localization and mapping (SLAM) of indoor environ-
ments is addressed using plane features. The plane param-
eter space (PPS) is defined for a compact representation of
planes in the Cartesian space. The statistical information
grid (STING) structure is constructed in the PPS to extract
plane features. The plane association graph is developed to
determine the correspondences between the plane features
from two successive scans. The RGB-D camera pose is di-
rectly calculated using the matched plane features if they
can provide sufficient constraints for the pose estimation.
Otherwise, a novel STING-based scan matching method is
developed in the PPS to achieve a full six degrees of free-
dom camera pose estimation. The proposed method uses
only the plane features independent of any other features
to estimate the RGB-D camera poses and can thus be suit-
able for some challenging scenes. The experimental results
demonstrate that the proposed plane feature-based RGB-D
SLAM can achieve high accuracy and robustness in both
on-board and hand-held applications.

Index Terms—Indoor environment mapping, plane fea-
ture, RGB-D camera, robot vision, six degrees of freedom
(6-DoF) camera pose estimation.

I. INTRODUCTION

R ECENTLY, there is increasing demand for mobile robots
to perform their given tasks in indoor industrial and office

environments, which is significant for intelligent manufacture
and service. Three-dimensional (3-D) mapping is of great im-
portance for autonomous navigation of a mobile robot. It pro-
vides a prerequisite for localization [1], [2], navigation [3], [4],
and path planning [5], [6]. The commercial launch of low-cost
and light-weight RGB-D cameras, such as the Microsoft Kinect
[7], Asus Xtion, and Carmine, offers an attractive alternative to
other sensors, such as monocular vision sensors [8] and laser
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range finders [9], [10] for building 3-D maps of indoor environ-
ments. Motion estimation of the robot using an RGB-D camera
mainly includes scan-matching-based methods [11]–[17] and
feature-based methods [18]–[22].

The scan matching generally recovers the robot motion by cal-
culating a transformation that best aligns two successive scans.
Based on the error metrics, the scan-matching-based methods
can be divided into three major groups, including geometric
error-based scan matching [11], [12], photometric error-based
scan matching [13]–[15], and their combination [16], [17]. The
geometric error-based scan matching uses the geometric dis-
tance as an error metric. In [11], the consecutive functions,
which were defined by extended Gaussian images created from
two successive scans, were correlated via spherical harmonic
analysis, resulting in a three degrees of freedom (3-DoF) rotation
estimate. Then, the iterative closest point (ICP) algorithm was
applied to refine the resultant rotation and simultaneously ob-
tain the 3-DoF translation. Regarding photometric error-based
scan matching [13]–[15], it is based on the photo-consistency
assumption that a point in the world coordinate system observed
by a camera at different poses yields the same brightness in the
image. The combination of geometric and photometric errors
was used in [16] and [17] for estimation of RGB-D camera
poses. However, all the aforementioned scan matching methods
may fail to track the camera pose when two successive scans are
far apart in orientation, which usually causes problems in data
association.

The feature-based methods need to extract features such as
points [18], [19], edges [20], and planar patches [21], [22] from
successive scans. Then, unknown correspondences between fea-
tures are determined to estimate the robot pose. The point
feature-based RGB-D simultaneous localization and mapping
(SLAM) systems (e.g., [18]) extracted the point features from
the RGB images as landmarks to compute the robot motion. The
point feature-based methods may fail when the robot cannot ex-
tract sufficient point features in textureless scenes. The plane
features, however, are less affected by the texture information
and are more suitable for describing the spatial structure of in-
door environments. In addition, they could also provide some se-
mantic information crucial for scene interpretation, which may
facilitate the robot performing various tasks.

In this paper, we propose a statistical information grid
(STING) based plane extraction (STING-PE) algorithm and a
plane feature-based RGB-D camera pose estimation method.
Specifically, the plane parameter space (PPS) is defined, and
the transformation between the PPS and Cartesian space is es-
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tablished. Then, the STING structure is constructed by dividing
the PPS into multilevel grid cells with different resolutions. The
points in each cell are approximately represented by a Gaussian
distribution. The plane features are extracted via a top-down
search of the STING structure. Then, the plane feature matching
is fulfilled based on the plane association graph (PAG), whose
nodes and edges represent planes and their geometric relation-
ships. The matched plane features are directly used to estimate
the RGB-D camera pose if the plane features can provide 6-DoF
constraint for camera motion (6-DoF constraint case). Degen-
eracy occurs when the plane feature can provide only 5-DoF or
3-DoF constraints for camera motion (5-DoF and 3-DoF con-
straint cases). For the degenerate cases, a STING-based scan
matching (STING-SM) method is developed in the PPS to pro-
vide extra constraints and calculate the 6-DoF camera pose. The
main contributions and advantages of this paper are as follows.

1) The proposed method only uses the plane features. It
provides a powerful alternative to the point feature-based
RGB-D SLAM systems when few point features are ex-
tracted in textureless environments or the RGB-D camera
is pointed to an area outside of the valid depth range.

2) The planes in the Cartesian space are represented as points
in the PPS, which are organized in a hierarchical grid
structure (STING). The plane extraction is executed via
a top-down search in the STING, which is robust to the
scale of planes and can facilitate real-time performance.

3) The plane features may not provide full 6-DoF constraint
for camera motion estimation. When the degenerate cases
(5-DoF and 3-DoF cases) are identified, STING-SM is
performed to provide the extra 1-DoF (or 3-DoF) con-
straint by aligning two scans in the PPS, which brings the
three constraint cases into a unified framework.

The rest of the paper is organized as follows. The sys-
tem overview is presented in Section II. The plane extraction
and matching based on the STING structure are discussed in
Section III. The plane feature-based RGB-D camera pose es-
timation is addressed in Section IV. A thorough experimental
evaluation is presented in Section V. Conclusions are presented
in Section VI.

II. SYSTEM OVERVIEW

In this paper, the points and planes are represented in three
different spaces. We use the left superscripts C, P , and R to
represent the Cartesian space, PPS, and RGB space, respec-
tively. For plane matching and RGB-D camera pose estimation,
we consider two successive scans, i.e., the current scan and the
reference scan, which are indicated by the right subscripts c and
r, respectively. For an overview of the proposed method, the
following notations are used:

CΩ Points in the Cartesian space;
CΩπ Local planes in the Cartesian space;
P Ω Points in the PPS;
O Cells in the STING structure;
Πc(Πr ) Planes extracted from the current (reference)

scan;
Πmc(Πmr ) Matched planes;
R, t Rotation and translation between the current

and reference frames.

Fig. 1. System overview.

A systematic overview of the proposed method is shown in
Fig. 1. The input to the entire system is the depth and RGB
images used for pose estimation at each time step (as the current
scan) and those at the previous time step (as the reference scan).
The output is the estimate of the camera pose.

First, P Ω is obtained by the PPS construction (PPSC) mod-
ule with CΩ and CΩπ as inputs. Cells O in the STING are then
constructed using P Ω through the STING structure construc-
tion (STING-SC) module. Planes Πc and Πr are extracted from
current and reference scans, respectively, by the STING-PE
module and matched by the PAG-based plane matching (PAG-
PM) module, which outputs the matched planes Πmc and Πmr .
Afterward, the plane feature-based RGB-D camera pose esti-
mation (PF-RGBD-CPE) module computes the camera pose by
aligning Πmc and Πmr . When the degenerate cases (5-DoF and
3-DoF) are identified, the STING-SM module is activated to
provide the extra constraints of the camera motion, yielding the
complete 6-DoF pose estimate.

III. PLANE EXTRACTION AND MATCHING

A. Construction of the PPS

For a point Cp ∈ R3 in the Cartesian coordinate system, if
Cp satisfies CnT Cp + C d = 0, it is on the plane represented by
C π = [CnT , C d]T , where Cn = [C nx, C ny , C nz ]T ∈ R3 is the
unit normal of the plane and C d ∈ R is the vertical distance from
the origin to the plane. The PPS is defined based on the plane
parameters. The coordinates of a point in the PPS are denoted by
P p = [P θ, P ϕ, P d]T ∈ R3, P θ ∈ [0, π], P ϕ ∈ (−π, π], where

⎧
⎪⎨

⎪⎩

P θ = arccos
(
C nz

)

P ϕ = atan2
(
C ny ,

C nx
)

P d = C d

. (1)

As shown in Fig. 2(a), a point in the PPS corresponds
to a plane in the Cartesian space. In indoor environments,
the point cloud data are acquired from surfaces, which
are normally locally planar. Let CΩ = {Cpi , i = 1, . . . , N}
be a set of points in the Cartesian coordinate system and
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Fig. 2. (a) Correspondence between a plane C π (left) in the Cartesian
space and a point P p (right) in the PPS. (b) Correspondence between
the local planes of two points C pi and C pj (left) in the Cartesian space
and two points P pi and P pj (right) in the PPS. (c) Correspondence
between plane measurement (left) in the Cartesian space and the points
(right) in the PPS.

CΩπ = {C πi, i = 1, . . . , N} be the corresponding local planes
estimated by [23]. They are projected into the PPS via (1) to
yield P Ω = {P pi , i = 1, . . . , N}.

On the other hand, if the coordinates of a point P pi in the
PPS are given, its corresponding plane C πi in the Cartesian
coordinate system can be computed by

C πi =

[
Cni
C di

]

=

⎡

⎢
⎢
⎢
⎣

sin P θi cos P ϕi
sin P θi sin P ϕi

cos P θi
P di

⎤

⎥
⎥
⎥
⎦
. (2)

For two points Cpi and Cpj lying on the same plane in the
Cartesian space, as shown in Fig. 2(b), the corresponding points
P pi and P pj in the PPS share the same coordinates. However,
the measured points in the Cartesian coordinate system are nor-
mally affected by sensor noise. As a result, the coordinates of
these points in the PPS are not exactly equal to one another.
Fig. 2(c) shows a real plane represented in the Cartesian coor-
dinate system, which is composed of measured points affected
by sensor noise, as well as the corresponding points in the PPS.
Although those points in the PPS are not completely coincident,
they tend to follow a concentrated distribution. Therefore, plane
extraction and modeling in the Cartesian space can be converted
into a problem of fitting a distribution for the points in the PPS.
To this end, we extend the basic STING structure [24] to the
3-D case and use it to organize the points in the PPS.

The mapping between a plane in the Cartesian space
and a point in the PPS is a one-to-one mapping given
P θ ∈ [0, π], P ϕ ∈ (−π, π]. A singularity occurs when Cn =
[0, 0,±1]T . However, the singularity can be completely elimi-
nated in theory by rotating the camera coordinate system before
the plane is projected into the PPS such that the parameters of
the rotated plane satisfy Cn �= [0, 0,±1]T . In the implementa-
tion, there are many local planes in the Cartesian space. We
find a common rotation for all the planes to generate a mapping
between two spaces far from the singularity. The rotation is

Fig. 3. Three highest levels of the STING structure built in the PPS.

obtained by a simple PCA analysis on the normal vectors of the
planes. Define a matrix CR as

CR =
1
N

N∑

i=1

CniCnTi . (3)

The eigenvalue decomposition of CR is computed by CR =
QRΛRQT

R , where ΛR = diag{λR,1, λR,2, λR,3} and QR =
[qR,1,qR,2,qR,3] denote the eigenvalues and the corresponding
eigenvectors, respectively. Assuming that λR,1 ≥ λR,2 ≥ λR,3,
rotation RPCA is defined as

RPCA =
[

qR,1 × qR,3
‖qR,1 × qR,3‖ qR,1 qR,3

]T

. (4)

The normal vectors of the planes are left-multiplied by RPCA

before the planes CΩπ are projected into the PPS. Likewise, the
normal vectors of the planes are left-multiplied by RT

PCA after
the points P Ω are projected back into the Cartesian space, such
that the original plane parameters CΩπ can be obtained. Note
that, the aforementioned process is performed independent of
any other calculation in either space. Furthermore, the impact
caused by a singularity is eliminated in actual experiments on
both public datasets and real scenes by performing this scheme.

B. STING Structure

The basic STING structure has been proposed in [24] for
spatial data mining. The spatial area is divided into multilevel
grid cells corresponding to different resolutions. Each cell at
a high level is partitioned into several cells at the next lower
level. A certain kind of distribution is assigned to the data in
each cell. The distribution parameters of the bottom-level cells
are calculated directly from the data inside. The parameters
of the higher-level cells can be easily obtained from those of
the lower-level cells. However, the basic STING structure in
[24] was developed for representing and fitting a distribution
of scalars, and it cannot be directly applied to represent vector
parameters of a high-dimensional distribution. Therefore, we
extend the basic STING to make it suitable for computing the
vector parameters in this paper.

As shown in Fig. 3,we divide the PPS into a hierarchical grid
structure. For the data points in each cell, a Gaussian distribution
is adopted to fit their coordinates P p = [P θ, P ϕ, P d]T ∈ R3 in
the PPS as well as the coordinates Rp = [Rr, Rg, Rb]T ∈ R3 of
their corresponding color image pixels in the RGB space.

We assume that the STING structure has L levels (L = 5
in our implementation) and that each cell of the lth level
(l = 1, . . . , L− 1) corresponds to the union of areas of its Ns
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children (Ns = 8 in our implementation) at the (l + 1)th level.
Fig. 3 shows the spatial relations between adjacent levels.

The cells in the constructed STING structure are denoted by
O = {olk}, k = 1, 2, . . . , (Ns)l−1, l = 1, 2, . . . , L. The quintu-
ple olk = (P mlk ,

Rmlk ,
P Slk , RSlk , clk ) represents the kth cell

at the lth level, where P mlk and Rmlk are the means of the
Gaussian distributions in the PPS and in the RGB space, respec-
tively, P Slk andRSlk are their covariance matrices, and clk is the
number of the data points in the cell. Meanwhile, the jth child
of olk is denoted by olkj = (P mlkj,

Rmlkj,
P Slkj,

RSlkj, clkj),
j = 1, 2, . . . , Ns . The point numbers clk and clkj satisfy clk =
∑Ns

j=1 clkj . For P p and Rp, we extend the method of the ba-
sic STING to fit the vector parameters. P mlk and P Slk can be
calculated as

P mlk =
1
clk

Ns∑

j=1

P mlkj clkj (5)

P Slk =
1
clk

Ns∑

j=1

clkj

(
P Slkj+P mlkj

P mlkj
T
)
−P mlk

P mlk
T

(6)

Rmlk and RSlk can be computed likewise.

C. STING Based Plane Extraction

If sufficient points concentrate in a small area in the PPS,
their corresponding local planes in the Cartesian space are
highly likely to be on the same plane, as shown in Fig. 2(b).
Based on this fact, the STING-PE method is proposed. With
the hierarchical STING structure in hand, STING-PE is ful-
filled by a top-down search whose purpose is to find the cells
containing sufficient data points that follow a concentrated
distribution in the PPS. For such a cell, the extracted plane
feature can be calculated using o = (P m, Rm, P S, RS, c).
Let Pπ = (C π, Rm, RS, c) denote the plane feature, where
C π = [CnT , C d]T is calculated from P m = [P θ, P ϕ, P d]T via
(2), Rm and RS represent the mean and covariance matrix of
the RGB value of the points on the plane, respectively, and c is
the number of the points on the plane.

Algorithm 1 gives the entire STING-PE process. In lines
2–6, each cell of O is initialized as “not relevant”. In lines
7–11, cells at the l0th level with sufficient points inside are
labeled “relevant”. In lines 12–27, for the “relevant” cells at
the lth level, their children containing sufficient inside points
that follow a concentrated distribution are extracted, and their
parameters olkj are used to describe a plane Pπ (line 19). The
children with sufficient scattered points are labeled “relevant”
(line 21). Because olkj is on the (l + 1)th level, when traversing
the lower (l + 1)th level, olkj will be treated as a “relevant” cell.

The threshold εn in Algorithm 1 is determined by experi-
ments and εn = 500 can achieve fairly good performance. The
threshold εs is set to be 0.01 in our experiments.

By means of the STING-PE algorithm, planes Π =
{Pπ,i = (C πi, Rmi ,

RSi , ci), i = 1, . . . , Nπ} are extracted
from the current scan, where Nπ is the number of planes.

Algorithm 1: STING-PE.
inputs:

STING structure O.
outputs:

Plane set
Π = {Pπ,i = (C πi, Rmi ,

RSi , ci), i = 1, · · · , Nπ}.
1: Start from the l0-th level. Set i = 0,Π = ∅.
2: for l = l0, · · · , L− 1 do
3: for k = 1, · · · , (Ns)l−1 do
4: Label the cell olk as “not relevant”.
5: end for
6: end for
7: for k = 1, · · · , (Ns)l0−1 do
8: if cl0k > εn then
9: Label the cell ol0k as “relevant”.

10: end if
11: end for
12: for l = l0, · · · , L− 1 do
13: for k = 1, · · · , (Ns)l−1 do
14: if the cell olk is labeled “relevant” then
15: for j = 1, · · · , Ns do
16: if clkj > εn then
17: if λlkj < εs then
18: i← i+ 1.
19: Add Pπ,i = (C πi, Rmi ,

RSi , ci)
to set Π.

20: else
21: Label the cell olkj as “relevant”.
22: end if
23: end if
24: end for
25: end if
26: end for
27: end for

D. PAG-Based Plane Matching

The PAG-PM is employed to set up correspondences between
two plane sets extracted from two successive scans, respectively.
The PAG is a graph built for each scan, wherein nodes represent
the extracted planes and edges represent the geometric relation-
ships between the planes.

Consider two plane sets Πc = {Pπc,i = (C πc,i , Rmc,i ,
RSc,i , cc,i), i = 1, . . . , Nπc} and Πr = {Pπr,k = (C πr,k ,
Rmr,k ,

RSr,k , cr,k ), k = 1, · · · , Nπr} extracted from the
current and reference scan, respectively. The geometric
relationship between two planes can be classified into two
categories, nonparallel and parallel. The relationship between
two nonparallel planes can be measured by the angle between
their normal vectors, and that between two parallel planes by
their vertical distance. For two planes Pπc,i , Pπc,j ∈ Πc , the
angle αc,ij ∈ [0, π] between their normal vectors is

αc,ij = arccos(CnTc,i
Cnc,j ). (7)
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Pπc,i and Pπc,j are regarded as parallel if αc,ij < εα1 (εα1 =
15◦ in our implementation), and nonparallel otherwise. The ver-
tical distance between parallel planes Pπc,i and Pπc,j is

dc,ij =
∣
∣C dc,i − C dc,j

∣
∣ . (8)

Then, we build the PAG Gc = (Vc, Ec) for Πc , where
Vc={vc,i = Pπc,i , i = 1, . . . , Nπc} is the set of nodes, and
Ec = {ec,ij , i, j = 1, . . . , Nπc , i �= j} is the set of edges. The
edge ec,ij is defined as

ec,ij = (ωc,ij , αc,ij , dc,ij ) , i, j = 1, . . . , Nπc , i �= j (9)

where ωc,ij ∈ {parallel,not parallel} is an enumeration variable

ωc,ij =

{
parallel if αc,ij < εα1

not parallel otherwise
(10)

and αc,ij can be calculated by (7). The distance dc,ij satisfies

dc,ij =

{∣
∣C dc,i − C dc,j

∣
∣ if ωc,ij = parallel

0 otherwise
. (11)

The PAG Gr = (Vr , Er ) for the plane set Πr in the reference
scan is constructed likewise.

For two edges ec,ij ∈ Ec and er,kl ∈ Er in two PAGs Gc =
(Vc, Ec) and Gr = (Vr , Er ), respectively, we define the rela-
tionship between ec,ij and er,kl as
⎧
⎪⎨

⎪⎩

ec,ij = er,kl if ωc,ij = ωr,kl and |αc,ij − αr,kl | < εα2

and |dc,ij − dr,kl | < εd

ec,ij �= er,kl otherwise

.

(12)
The thresholds in (12) are chosen as εα2 = 5◦ and εd = 0.06 m
in the experiments.

For any two nodes vc,i ∈ Vc and vr,k ∈ Vr , we define the
similarity s(vc,i , vr,k ) between vc,i and vr,k by

s (vc,i , vr,k ) = scol (vc,i , vr,k ) + sgeo (vc,i , vr,k ) (13)

where scol(vc,i , vr,k ) and sgeo(vc,i , vr,k ) represent the color
and geometric similarity, respectively. The color similarity
scol(vc,i , vr,k ) is defined as the Bhattacharyya distance between
the color distributions of two planes as follows:

scol (vc,i , vr,k ) =
1
8

(
Rmc,i−Rmr,k

)T RS−1
(
Rmc,i − Rmr,k

)

+
1
2

ln

( ∣
∣RS

∣
∣

√|RSc,i | · |RSr,k |

)

(14)

where RS =
R Sc , i +R Sr , k

2 . The geometric similarity sgeo

(vc,i , vr,k ) is defined by the sum of color similarity
of the nodes connected to vc,i and vr,k by similar
edges [25]

sgeo (vc,i , vr,k )

=
1

∣
∣Ivc , i |vr , k

∣
∣

∣
∣
∣Iv c , i |v r , k

∣
∣
∣

∑

t=1

scol
(
Ivc , i |vr , k [t] , Ivr , k |vc , i [t]

)
(15)

Algorithm 2: PF-RGBD-CPE.
inputs:

Matched plane set Πmc and Πmr .
outputs:

The transformation between two successive scans R
and t.

1: Compute matrix H and its SVD.
2: if λ1 ≥ λ2 ≥ λ3 > 0 then
3: // 6-DoF case
4: Compute R and t using (19) and (20), respectively.
5: else
6: if λ1 ≥ λ2 > λ3 = 0 then
7: // 5-DoF case
8: Compute R and t1 using (22) and (24),

respectively.
9: Compute t2 by minimizing (29).

10: t = t1 + t2.
11: else
12: // 3-DoF case
13: Compute R1 and t1 using (31) and (33),

respectively.
14: Compute R2 and t2 by minimizing (46).
15: R = R2R1 and t = t1 + t2.
16: end if
17: end if

where Ivc , i |vr , k and Ivr , k |vc , i are two index sets. For the
nodes {vc,j , j = 1, . . . , Nπc , j �= i} and {vr,l , l = 1, . . . , Nπr ,
l �= k}, if ec,ij and er,kl satisfy ec,ij = er,kl , then vc,j and vr,l
are pushed into Ivc , i |vr , k and Ivr , k |vc , i , respectively. In other
words, the tth element Ivc , i |vr , k [t] in Ivc , i |vr , k and Ivr , k |vc , i [t]
in Ivr , k |vc , i represent the nodes connected with vc,i and vr,k
by the similar edges in Gc and Gr , respectively. |Ivc , i |vr , k | and
|Ivr , k |vc , i | represent the numbers of the elements in Ivc , i |vr , k and
Ivr , k |vc , i , respectively, and satisfy |Ivc , i |vr , k | = |Ivr , k |vc , i |. Each
pair of planes from Πc and Πr is examined by the similarity (13)
to find correspondence between them. The number of planes ex-
tracted from one single frame is relatively small. Therefore, the
traversal of the PAGs constructed from two successive scans is
timesaving.

IV. RGB-D CAMERA POSE ESTIMATION

In this section, the PE-RGBD-CPE method is pro-
posed to estimate the 6-DoF RGB-D camera pose R
and t. Consider two sets of matched planes Πmc =
{Pπc,i = (C πc,i , Rmc,i ,

RSc,i , cc,i), i = 1, . . . , Nπ} and
Πmr ={Pπr,i = (C πr,i , Rmr,i ,

RSr,i , cr,i), i = 1, . . . , Nπ},
where {Pπc,i , Pπr,i} is a pair of matched planes, and Nπ is the
number of the matched plane pairs.

The matched planes can provide three kinds of constraints
for the camera pose estimation. To distinguish them, a matrix
H =

∑Nπ

i=1
Cnc,iCnTr,i is defined [26] and the singular value

decomposition (SVD) is performed for H as follows:

H = UΛVT = λ1u1vT1 + λ2u2vT2 + λ3u3vT3 (16)
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Fig. 4. Three examples corresponding to three cases of constraints:
(a) three nonparallel plane pairs {Pπ c,i , Pπ r,i}, i = {1, 2, 3} from the
current scan and the reference scan, respectively, for the 6-DoF case,
(b) two nonparallel plane pairs {Pπ c,i , Pπ r,i}, i = {1, 2} for the 5-DoF
case, and (c) one plane pair {Pπ c,1, Pπ r,1} for the 3-DoF case.

where U = [u1,u2,u3] and V = [v1,v2,v3] are both orthonor-
mal matrices, and Λ = diag{λ1, λ2, λ3} (λ1 ≥ λ2 ≥ λ3). Be-
causePπc,i is corresponding toPπr,i , for any i ∈ {1, 2, . . . , Nπ}
and j ∈ {1, 2, 3}, if CnTc,iuj = 0 holds, then we have CnTr,i
vj = 0.

The three kinds of constraint cases can be distinguished online
according to the singularity values of H. For all the three cases,
R and t are computed by minimizing (17) and (18), respectively,

JR (R) =
Nπ∑

i=1

∥
∥Cnr,i −R · Cnc,i

∥
∥2

(17)

Jt (t) =
Nπ∑

i=1

(
C dr,i −

(
C dc,i + CnTr,it

))2
. (18)

In what follows, the detailed method is discussed for three dif-
ferent cases, respectively. Accordingly, the pseudo-code is given
in Algorithm 2.

A. 6-DoF Constraint Case

If H is nonsingular, at least three pairs of nonparallel planes
are matched between Πmc and Πmr , as shown in Fig. 4(a). The
rotation R to minimize (17) can be calculated by [26]

R = UVT . (19)

And t to minimize (18) can be obtained through the least-square
method

t =
(
AT A

)−1
AT d (20)

where

A =

⎡

⎢
⎢
⎢
⎣

CnTr,1
CnTr,2
· · ·

CnTr,Nπ

⎤

⎥
⎥
⎥
⎦

d =

⎡

⎢
⎢
⎢
⎣

C dr,1 − C dc,1
C dr,2 − C dc,2

· · ·
C dr,Nπ

− C dc,Nπ

⎤

⎥
⎥
⎥
⎦
. (21)

B. 5-DoF Constraint Case

If H is singular and λ1 ≥ λ2 > λ3 = 0, then
{Cnc,i , i = 1, 2, . . . , Nπ} ({Cnr,i , i = 1, 2, . . . , Nπ}) are
coplanar and vertical to the u3(v3). Whereas, in practical
applications, λ3 may not be exactly equal to zero due to noise.
In our implementation, λ3 is regarded as zero when it satisfies
λ2 > 10λ3. In Fig. 4(b), two correspondences are established
between two pairs of nonparallel planes from Πmc and Πmr . In
this case, R is computed by [26]

R =

{
UVT if det(UVT ) = 1

U′VT if det(UVT ) = −1
(22)

where U′ = [u1,u2,−u3].
The translation vector t cannot be directly solved by (20)

because det(AT A) = 0. Note that, the translation along the
direction ofv3 does not change the plane parameters ofPπr,1 and
Pπr,2. Therefore, the translation along v3 cannot be constrained
between these two scans. Let the component t2 of the translation
along v3 be zero, and define the objective function J1,t(t) as

J1,t (t) =
Nπ∑

i=1

(
C dr,i −

(
C dc,i + CnTr,it

))2
+
(
vT3 t

)2
. (23)

Then, t1 can be solved by minimizing J1,t(t) with the least-
square method as follows:

t1 =
(
AT

1 A1
)−1

AT
1 d1 (24)

where

A1 =

⎡

⎢
⎢
⎢
⎢
⎣

vT3
CnTr,1
· · ·

CnTr,Nπ

⎤

⎥
⎥
⎥
⎥
⎦

d1 =

⎡

⎢
⎢
⎢
⎣

0
C dr,1 − C dc,1

· · ·
C dr,Nπ

− C dc,Nπ

⎤

⎥
⎥
⎥
⎦
. (25)

The resultant transformation R and t1 can align the corre-
sponding planes in Πmc and Πmr . Until now, the translation
t2 = μv3 along the v3 direction has not been determined. In
what follows, we calculate it to yield the complete 6-DoF cam-
era pose estimate.

Denote the point sets in the PPS (obtained in Section III-A)
of the current and reference scans by P Ωc =
{P pc,i , i = 1, . . . , Nc} and P Ωr = {P pr,i , i = 1, . . . , Nr},
respectively, as shown in Fig. 4(b). Let P Ωt =
{P pt,i , i = 1, . . . , Nc} be the point set transformed from
P Ωc by R and t1. For any P pt,i ∈ P Ωt , its local plane in the
Cartesian space is C πt,i = [Cnt,i , C dt,i ]T . Assuming that t2 is
applied to P pt,i to generate P pt ′,i , whose local plane in the
Cartesian space is C πt ′,i = [Cnt ′,i , C dt ′,i ]T . Then we have

Cnt ′,i = Cnt,i (26)

C dt ′,i = C dt,i + CnTt,it2 = C dt,i + μ · CnTt,iv3. (27)

From (26) and (27), if Cnt,i is perpendicular to v3, t2

has no effect on both Cnt ′,i and C dt ′,i . Therefore, we
set a threshold εsub to exclude the points in P Ωt that
make little contribution to the computation of t2, yield-
ing a subset of P Ωt denoted by P Ωt,sub = {P pt,i , i =
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1, 2, . . . Nt,sub|P pt,i ∈ P Ωt , |CnTt,iv3| > εsub}. In the experi-
ments, εsub = 0.5 produces satisfactory results.

To estimate the translation t2, a STING-SM method is pro-
posed. The bottom level cells {oLk , k = 1, 2, . . . , (Ns)L−1} in
the STING structure (built in Section III-B) of the reference
scan are used to fit a local Gaussian distribution of the points
P Ωr in the PPS. The translation t2 = μv3 is applied to the point
set P Ωt,sub in the PPS using (26) and (27), yielding a point
set P Ωt ′,sub = {P pt ′,i , i = 1, . . . , Nt,sub}. It is assumed that for
each i ∈ {1, . . . , Nt,sub}, P pt ′,i falls into the ki th cell oLki . Ac-
cording to the local Gaussian distribution of the cell oLki , the
probability of measuring a point in the location of P pt ′,i can be
computed by

p
(
P pt,i , μ

)

=
1
ρ1

exp
−(P pt ′,i − P mLki

)T P SLki
−1 (P pt ′,i − P mLki

)

2
(28)

where ρ1 is a normalization factor. Then, Newton’s algorithm is
used to solve μ by minimizing

f (μ) = −
Nt , sub∑

i=1

p
(
P pt,i , μ

)
. (29)

Therefore, the translation t2 = μv3 can be determined. The 6-
DoF transformation between the two successive scans is thus ob-
tained only based on the matched plane features and the STING
structure, without requirement for any other feature extraction
process. Equations (22) and (24) provide a close-form solution
to R and t1. As for the calculation of t2, only one variable μ,
rather than a 6-DoF pose, needs to be computed with the nonlin-
ear optimization. As a result, the computation process is largely
simplified.

C. 3-DoF Constraint Case

If H is singular and λ1 > λ2 = λ3 = 0, then
{Cnc,i , i = 1, 2, . . . , Nπ} ({Cnr,i , i = 1, 2, . . . , Nπ}) are
along the u1(v1) direction. In Fig. 4(c), only one plane cor-
respondence is established between the current and reference
scans. In this case, the rotation about the v1 and the translation
along the v2 and v3 cannot be constrained.

Because the rotation about v1 cannot be constrained, there
exist infinite rotation matrices that can minimize (17). To obtain
a unique solution, we redefine a new objective function

J2,R (R) =
Nπ∑

i=1

∥
∥Cnr,i −R · Cnc,i

∥
∥2

+ ‖v2 −Ru2‖2. (30)

Likewise, define the matrix H1 =
∑Nπ

i=1
Cnc,iCnTr,i + u2vT2 =

H + u2vT2 and find its SVD H1 = U1Λ1VT
1 . Then, the rotation

matrix R1 that minimizes (30) can be calculated by

R1 =

{
U1VT

1 if det(U1VT
1 ) = 1

U′1V
T
1 if det(U1VT

1 ) = −1
(31)

where U′1 is defined in the same way as U′ in the 5-DoF case.

To calculate the translation vector t1, we define

J2,t (t)=
Nπ∑

i=1

(
C dr,i−

(
C dc,i+CnTr,it

))2
+
(
vT2 t

)2
+
(
vT3 t

)2
.

(32)
And the least-square method is utilized to obtain t1 by minimiz-
ing J2,t(t)

t1 =
(
AT

2 A2
)−1

AT
2 d2 (33)

where

A2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

vT2
vT3

CnTr,1
· · ·

CnTr,Nπ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

d2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

0
C dr,1 − C dc,1

· · ·
C dr,Nπ

− C dc,Nπ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (34)

Furthermore, an additional transformation (R2, t2) needs to
be calculated to obtain the complete 6-DoF transformation, as
shown in Fig. 4(c). We denote R2 and t2 by a compact form w =
[φ, x, y]T , where φ ∈ [0, 2π) is the rotation angle around v1,
x, y ∈ R are the components of t2 along v2 and v3, respectively.
Then, R2 and t2 can be represented by

R2 =

⎡

⎢
⎣

v2
1,x · kφ+ cφ

v1,xv1,y · kφ+ v1,z · sφ
v1,xv1,z · kφ− v1,y · sφ

v1,xv1,y · kφ− v1,z · sφ v1,xv1,z · kφ+ v1,y · sφ
v2

1,y · kφ+ cφ v1,y v1,z · kφ− v1,x · sφ
v1,y v1,z · kφ+ v1,x · sφ v2

1,z · kφ+ cφ

⎤

⎥
⎦

(35)

t2 = xv2 + yv3 (36)

where sφ = sinφ, cφ = cosφ, kφ = 1− cosφ and v1 =
[v1,x , v1,y , v1,z ]T .

In this case, (26) and (27) become

Cnt ′,i = R2 · Cnt,i (37)

C dt ′,i = C dt,i +
(
R2 · Cnt,i

)T
t2. (38)

Assuming that the variation of w is small, R2 can be approxi-
mated by

R2 =

⎡

⎢
⎣

1 −v1,z φ v1,y φ

v1,z φ 1 −v1,xφ

−v1,y φ v1,xφ 1

⎤

⎥
⎦ . (39)
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The Jacobian matrix of C πt ′,i with respect to w is

∂C πt ′,i
∂w

=

⎡

⎣

∂C n t ′ , i
∂w

∂C dt ′ , i
∂w

⎤

⎦

=

⎡

⎢
⎢
⎢
⎣

C nzv1,y − C nyv1,z 0 0
C nxv1,z − C nzv1,x 0 0
C nyv1,x − C nxv1,y 0 0

0 CnTt,iv2
CnTt,iv3

⎤

⎥
⎥
⎥
⎦

(40)

where Cnt,i = [C nx, C ny , C nz ]T .
∂C πt ′ , i
∂w represents the varia-

tion of the plane parameters C πt,i caused by a small transfor-
mation Δw. Namely,

[
Cnt ′,i − Cnt,i
C dt ′,i − C dt,i

]

=
∂C πt ′,i
∂w

Δw. (41)

Squaring (41) results in

D
(
Cnt,i

)
= ΔwT

(
∂C πt ′,i
∂w

)T (
∂C πt ′,i
∂w

)

Δw

= ΔwT ΨΔw (42)

where Ψ = ( ∂
C πt ′ , i
∂w )T ( ∂

C πt ′ , i
∂w ) is a symmetric and positive

semidefinite matrix. Its eigenvalue decomposition is com-
puted by Ψ = QΛψQT , where Λψ = diag{λψ ,1, λψ ,2, λψ ,3}
andQ = [q1,q2,q3] denote the eigenvalues and the correspond-
ing eigenvectors, respectively,

λψ ,1 =
∥
∥v1 × Cnt,i

∥
∥2
,q1 = [1, 0, 0]T (43)

λψ ,2 =
(
CnTt,iv2

)2
+
(
CnTt,iv3

)2
,

q2 =
1
ρ2

[
0, CnTt,iv2,

CnTt,iv3
]T

(44)

λψ ,3 = 0,q3 =
1
ρ3

[
0, CnTt,iv3,−CnTt,iv2

]T
(45)

where ρ2 and ρ3 are the normalization factors. The eigen-
value λψ ,j , j ∈ {1, 2, 3} is proportional to the rate of the
change of C πt,i , which is caused by the transformation
specified by qj . Note that, a singularity of Ψ exists because
λψ ,3 is equal to zero. As a result, transformation specified
by q3 cannot cause a change of C πt,i . Thus, to prevent
λψ ,1 and λψ ,2 from being zero, the subset P Ωt,sub =
{P pt,i , i = 1, 2, . . . Nt,sub |P pt,i ∈ P Ωt , |CnTt,iv2| > εsub ,

|CnTt,iv3| > εsub} is chosen to exclude the points in P Ωt which
lead to CnTt,iv2 = 0 and CnTt,iv3 = 0.

Similar to the case of 5-DoF constraint, f(w) can be
defined as

f (w) = −
Nt , sub∑

i=1

p
(
P pt,i ,w

)
(46)

where p(P pt,i ,w) is defined in the same way as (28), where
P Ωt ′,sub is obtained via (37) and (38).

TABLE I
RECALL RATE AND PRECISION RATE OF THE TWO METHODS ON FIVE IMAGE

SEQUENCES

STING-PE RANSAC-PE

Fr1/xyz Recall rate 98.6% 93.5%
Precision rate 99.0% 95.1%

Fr2/desk Recall rate 97.3% 92.7%
Precision rate 99.3% 90.2%

Fr1/room Recall rate 98.5% 93.5%
Precision rate 97.0% 87.3%

Fr3/cabinet Recall rate 100% 100%
Precision rate 100% 100%

Fr2/pioneer360 Recall rate 89.4% 76.2%
Precision rate 91.2% 82.2%

V. EXPERIMENTAL EVALUATION

In this section, the STING-PE method in the PPS is first
compared with the most widely used RANSAC algorithm per-
formed in the Cartesian space. Then, the proposed PF-RGBD-
CPE method is run as the RGB-D visual odometry (VO) on
the Freiburg RGB-D benchmark [27] and is compared with the
plane-point method [22] and the RGBD-ICP method [28]. We
also apply g2o [29] to the PF-RGBD-CPE method as a back-
end optimizer to perform the map correction, which yields a
complete SLAM system. It is then compared with the RGBD-
ICP + sparse bundle adjustment (SBA) SLAM system [28] and
ElasticFusion [17] on the same RGB-D benchmark. Finally,
a real-world experiment using a Pioneer 3-DX mobile robot
equipped with a Microsoft Kinect 1.0 is performed in a labo-
ratory environment, using the proposed PF-RGBD-CPE as the
VO.

A. Plane Extraction Experiment

To test the performance of the STING-PE, we compared it
with the RANSAC-based plane extraction (RANSAC-PE). In
our experiment, the distance threshold of the RANSAC is set to
0.01 m, and the inlier number threshold is set to 500. Note that
these thresholds are chosen as the best ones among many trials.

For the five image sequences chosen from the Freiburg
dataset, we manually label the planes in each sequence. The two
methods are employed on the five sequences. The recall rate and
precision rate are used to evaluate the performance of the two
methods. The recall rate is the fraction of the labeled planes that
have been extracted over all the labeled planes. Precision is the
fraction of extracted planes that are labeled over all the extracted
planes. The recall and precision rates are calculated on each se-
quence and are shown in Table I.Note that the STING-PE yields
higher recall and precision rates than the RANSAC-PE on the
sequences except for Fr3/cabinet. On the Fr3/cabinet sequence,
the recall and precision rates of both methods are 100% because
the scene merely consists of several planar surfaces.

Table II shows the average computation time of the two meth-
ods for each frame of the five image sequences. The test platform
is a PC with an Intel Pentium G2020 CPU at 2.9 GHz and 4 GB
RAM. It can be seen that the STING-PE method is generally
less time-consuming than the RANSAC-PE method.
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TABLE II
AVERAGE COMPUTATION TIME OF THE TWO METHODS FOR EACH FRAME OF

FIVE IMAGE SEQUENCES

STING-PE RANSAC-PE

Fr1/xyz 85.1 ms 116.0 ms
Fr2/desk 171.8 ms 286.5 ms
Fr1/room 128.2 ms 168.3 ms
Fr3/cabinet 113.9 ms 163.1 ms
Fr2/pioneer360 249.7 ms 325.0 ms

TABLE III
COMPARISON OF THREE CAMERA POSE ESTIMATION METHODS

PF-RGBD-CPE Plane-point RGB-D ICP

Fr1/xyz ATE 0.0381 m 0.0513 m 0.0539 m
RPE 0.0224 m, 0.77◦ 0.0259 m, 0.96◦ 0.0233 m, 1.11◦

Fr2/desk ATE 0.0987 m 0.127 m 0.305 m
RPE 0.0484 m, 1.57◦ 0.0507 m, 1.70◦ 0.0515 m, 1.81◦

Fr1/room ATE 0.284 m 0.341 m 1.53 m
RPE 0.0418 m, 1.81◦ 0.0668 m, 2.44◦ 0.365 m, 21.4◦

Fr3/cabinet ATE 0.0709 m 0.760 m 1.33 m
RPE 0.0113 m, 1.02◦ 0.134 m, 12.1◦ 0.599 m, 19.6◦

Fr2/pioneer360 ATE 0.5102 m Failed Failed
RPE 0.1357 m, 1.55◦

TABLE IV
OCCURRENCE PERCENTAGE OF THREE KINDS OF CONSTRAINTS IN THE

FIVE IMAGE SEQUENCES

Fr1/xyz Fr2/desk Fr1/room Fr3/cabinet Fr2/pioneer360

6-DoF 44.6% 53.8% 44.7% 48.5% 2.1%
5-DoF 40.9% 35.1% 32.5% 47.4% 20.6%
3-DoF 14.5% 11.1% 22.8% 4.1% 77.3%

B. Comparison of Different Camera Pose
Estimation Methods

The proposed PF-RGBD-CPE method estimates the incre-
mental camera motion and VO can be calculated by the integra-
tion of the incremental motion. The accuracy of our method is
compared with that of two other VO algorithms: the plane-point
method [22] and the RGBD-ICP method [28]. The plane-point
method used both planes and points as primitives in a RANSAC
framework to determine correspondences and compute the sen-
sor pose. In the RGBD-ICP method, both sparse FAST feature
points and a dense point cloud were used to calculate the sensor
pose via the ICP algorithm. Table III gives the experimental
results of the three methods, where the root mean square errors
(RMSEs) of both the absolute trajectory error (ATE) and the
relative pose error (RPE) are adopted as the error metric. From
Table III, the PF-RGBD-CPE method outperforms the other two
in terms of both the ATE and RPE. The percentage of the 6-DoF,
5-DoF, and 3-DoF constraint cases in every sequence is shown
in Table IV. It can be seen that, insufficient constraint cases are
likely to occur in the indoor environments because the RGB-
D cameras commonly have a narrow field of view and a quite

Fig. 5. Point cloud maps (a)–(c) and the visualizations of the ATE (d)–
(f) on Fr3/cabinet for PF-RGBD-ICP method, plane-point method, and
RGBD-ICP method, respectively. The trajectories estimated by either
the plane-point method or the RGBD-ICP method have large offset with
respect to the ground truth in (e) and (f), while the trajectory estimated
by the PF-RGBD-CPE method is close to the ground truth in (d). (g) is
the extracted and matched SURF point features from two successive
frames.

limited depth range. The results demonstrate that STING-SM is
performed as a necessary component of the PF-RGBD-CPE.

In the following, we further show some detailed results on
the image sequences Fr3/cabinet and Fr2/pioneer360.

For the sequence Fr3/cabinet, the handheld Asus Xtion moves
around a cabinet with little texture and structure. Fig. 5 (a)–(f)
shows the generated point cloud maps and the visualizations
of the ATE for three methods. In Fig. 5(c), RGBD-ICP cannot
restore the contours of the environment because few point fea-
tures can be correctly matched between two successive frames,
as shown in Fig. 5(g). Additionally, the offset of the trajectory
estimated by the plane-point method from the ground truth is
very large because this method heavily relies on the point fea-
tures when the matched plane features cannot provide enough
constraints. In contrast, our method performs well, as shown in
Fig. 5(a) and (d). In this case, the plane features turn out to be a
powerful alternative to the point features.

For the image sequence Fr2/pioneer360, the Kinect was
mounted on the top of a Pioneer robot, which was controlled by
a joystick to wander around an industrial hall. The area of the
industrial hall is quite large compared with the office environ-
ment. As a result, the depth measurement is usually missing or
noisy because of the quadratic growth of the depth uncertainty
in RGB-D cameras [30]. Therefore, it is a very challenging
scene for a SLAM system. From Table III, only the PF-RGBD-
CPE method can build the environment map successfully. The
point cloud map and the visualization of the ATE are shown in
Fig. 6(a) and (b), respectively. Because the area of the hall is
large, most of the SURF features detected in the RGB images
frequently go out of the depth range of the Kinect. Thus, the
association between these point features in the RGB image and
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Fig. 6. Point cloud map (a) and the visualization of the ATE (b) on
Fr2/pioneer360 for the PF-RGBD-CPE method.

TABLE V
MEAN AND STANDARD DEVIATION OF THE COMPUTATION TIME FOR EACH

FRAME OF FIVE IMAGE SEQUENCES

PF-RGBD-CPE Plane-point RGB-D ICP

Fr1/xyz 198.7 ± 173.2 ms 366.1 ± 60.7 ms 446.3 ± 72.7 ms
Fr2/desk 259.3 ± 187.4 ms 423.8 ± 79.3 ms 506.4 ± 108.3 ms
Fr1/room 248.6 ± 175.5 ms 333.7 ± 51.1 ms 439.3 ± 95.4 ms
Fr3/cabinet 175.1 ± 76.2 ms 276.3 ± 49.2 ms 386.8 ± 51.4 ms
Fr2/pioneer360 401.4 ± 184.2 ms

their counterparts in the 3-D point cloud cannot be established.
As a result, both the plane-point and RGBD-ICP methods, which
rely on sufficient 3-D point features, fail to build the map of the
hall.

For the three methods, the mean and standard deviation of
the computation time of each frame is shown in Table V. All
the experiments are run on a PC with an Intel Pentium G2020
CPU at 2.9 GHz and 4 GB RAM. As can be seen from Table V
that the average runtime of our method is less than that of the
other two, though the standard deviation of our method is larger,
because the 5-DoF and 3-DoF cases in our method are generally
more time-consuming than the 6-DoF case due to the additional
scan matching process.

C. Comparison of Different SLAM Methods

Using the PF-RGBD-CPE as the front-end and the g2o [29]
as the backend pose graph optimizer, a complete SLAM system
is constructed and compared with the state-of-the-art ElasticFu-
sion [17] as well as the SLAM algorithm proposed in [28]. This
experiment is conducted just to demonstrate that the PF-RGBD-
CPE method can work well in an entire SLAM system with any
pose graph optimization as the backend optimizer. ElasticFusion
is a map-centric approach to dense SLAM. It maintains a fused
surfel-based dense map of the environment and performs fusing
and tracking simultaneously. The loop closure was achieved via
the randomized fern encoding technique, and the map correction
was fulfilled by nonrigid deformation. The SLAM in [28] was
performed using RGBD-ICP as the frontend and the SBA [31]
as the backend optimizer.

The ATE RMSEs of three SLAM systems are shown in Ta-
ble VI, where the results of ElasticFusion have been published
in [17]. Our method outperforms the other two except for on

TABLE VI
COMPARISON OF THREE SLAM SYSTEMS

PF-RGBD-CPE + g2o ElasticFusion RGBD-ICP + SBA

Fr1/xyz 0.011 m 0.011 m 0.014 m
Fr2/desk 0.053 m 0.071 m 0.113 m
Fr1/room 0.083 m 0.068 m 1.322 m
Fr3/cabinet 0.032 m Failed 1.152 m
Fr2/pioneer360 0.209 m Failed Failed

the Fr1/room sequence, on which ElasticFusion achieves the
best result in term of the ATE RMSE. However, ElasticFusion
fails to track the camera pose on the sequences Fr3/cabinet
and Fr2/pioneer360. The photometric and geometric frame-to-
model tracking of ElasticFusion is likely to fail for a texture-
less and simple structure, such as the Fr3/cabinet scene. For
Fr2/pioneer360, the camera sometimes points to an area outside
of the range of valid depths, which results in failures for dense
tracking methods. For more details, see [17].

D. Real-World Robot Experiment

In this experiment, the proposed method is run as an RGB-
D VO without any backend optimization in a real world scene.
The size of the laboratory is approximately 12.0 m× 5.2 m. The
Kinect is mounted on the Pioneer 3-DX mobile robot 1.14 m
above the ground, pointing to the right side of the robot. The
PF-RGBD-CPE runs on an onboard computer (Intel Pentium
Dual T2390 CPU at 1.86 GHz, 3G RAM). The length of the
trajectory is approximately 46.7 m, covering two loops around
the laboratory. During the first loop, the Kinect points to the
tables in the middle of the room, and during the second loop it
points to the surrounding walls.

The estimated trajectory of the mobile robot is shown in
Fig. 7,where the built point cloud map is projected onto the X-
and Z-axes of the global coordinate system (i.e., the camera
coordinate system of the first frame), and the generated 3-D
point cloud map is shown in Fig. 8. In frame 1, a white board is
observed by the robot, which is marked with a red ellipse labeled
“1” in Figs. 7 and Fig. 8(a)–(c). After traveling approximately
19.9 m around the room, the robot re-observes the same white
board in frame 42. From Fig. 8, we can see that the observation
of the same white board in frame 1 almost completely overlaps
with the one in frame 42 in the point cloud map. Likewise, the
robot observes a white carton in frame 52 and again in frame
106 after traveling approximately 23.8 m. The white carton is
marked in Figs. 7 and 8(a)–(c) with a red ellipse labeled “2”.
Note from Fig. 8(a)–(c) that only a small offset occurs after the
incremental mapping process of a distance of 24 m using the PF-
RGBD-CPE method as a frame-to-frame registration technique.

In summary, the PF-RGBD-CPE method yields good results
in both incremental mapping and complete SLAM. Especially
when the environment is lacking in texture or the RGB-D sensor
is pointed to an area outside of the valid depth values, the PE-
RGBD-CPE method can provide an alternative to the existing
point-feature-based SLAM technique.
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Fig. 7. Estimated trajectory of the mobile robot and the point cloud map projected onto the X - and Z -axes of the global coordinate system. The
white board seen at frame 1 and frame 42 is marked by the red ellipse labeled “1”, and the white carton seen at frame 52 and frame 106 is marked
by the red ellipse labeled “2” in Fig. 8.

Fig. 8. Three-dimensional point cloud map generated by the PF-
RGBD-CPE method as a frame-to-frame registration technique. The
labels “1” and “2” indicate the white board and the white carton, respec-
tively, which are circled with the same labels in Fig. 7. (a) Panoramic
view of the generated map. (b) and (c) The zoom-in local views of the
map.

VI. CONCLUSION

In this paper, an RGB-D camera pose estimation method
aiming at 3-D indoor environment mapping has been proposed.
The STING-PE and PAG-PM have been presented. Then, the
matched plane features have been used to calculate the RGB-D
camera pose. When the plane matches fail to provide suffi-
cient constraints for the camera pose estimation, a STING-SM
method has been developed to offer extra constraints and achieve
full 6-DoF camera pose estimation.

The proposed method is applicable not only to 3-D mapping
using a hand-held RGB-D sensor, but also to SLAM with a mo-
bile robot or an air vehicle. Experimental results have demon-

strated that the proposed method compares favorably with other
VO and SLAM techniques. It performs well even for texture-less
indoor scenes.
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