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Abstract— Planes and edges are attractive features for
simultaneous localization and mapping (SLAM) in indoor envi-
ronments because they can be reliably extracted and are robust
to illumination changes. However, it remains a challenging
problem to seamlessly fuse two different kinds of features to
avoid degeneracy and accurately estimate the camera motion.
In this article, a plane-edge-SLAM system using an RGB-D
sensor is developed to address the seamless fusion of planes
and edges. Constraint analysis is first performed to obtain a
quantitative measure of how the planes constrain the camera
motion estimation. Then, using the results of the constraint
analysis, an adaptive weighting algorithm is elaborately designed
to achieve seamless fusion. Through the fusion of planes and
edges, the solution to motion estimation is fully constrained, and
the problem remains well-posed in all circumstances. In addition,
a probabilistic plane fitting algorithm is proposed to fit a plane
model to the noisy 3-D points. By exploiting the error model
of the depth sensor, the proposed plane fitting is adaptive to
various measurement noises corresponding to different depth
measurements. As a result, the estimated plane parameters are
more accurate and robust to the points with large uncertainties.
Compared with the existing plane fitting methods, the proposed
method definitely benefits the performance of motion estimation.
The results of extensive experiments on public data sets and in
real-world indoor scenes demonstrate that the plane-edge-SLAM
system can achieve high accuracy and robustness.

Note to Practitioners—This article is motivated by the robust
localization and mapping for mobile robots. We suggest a novel
simultaneous localization and mapping (SLAM) approach fusing
the plane and edge features in indoor scenes (plane-edge-SLAM).
This newly proposed approach works well in the textureless or
dark scenes and is robust to the sensor noise. The experiments
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are carried out in various indoor scenes for mobile robots, and
the results demonstrate the robustness and effectiveness of the
proposed framework. In future work, we will address the fusion
of other high-level features (for example, 3-D lines) and the active
exploration of the environments.

Index Terms— Plane fitting, RGB-D camera, six-degree-of-
freedom (6-DoF) camera motion estimation.

I. INTRODUCTION

S IMULTANEOUS localization and mapping (SLAM) is
one of the fundamental problems for mobile rbots nav-

igating in indoor environments [1]–[4]. Planes are inherently
attractive features for SLAM in indoor environments that
mainly include man-made structures. Compared with point
features, planes are more robust to illumination changes
and are demonstrated to perform well in low-texture regions
[5], [6]. They can also provide structural and semantic infor-
mation of the environments, which can be used in applications,
such as path planning [7], [8], target tracking [9], place
recognition [10], [11], and robot manipulation [12].

Many researchers have exploited the advantages of planes
in localization and navigation of mobile robots in indoor envi-
ronments [13]–[15]. The weakness of estimating the camera
motion using only plane features lies in the possibility of ill-
posedness because there exist spatial configurations of planes
that cannot fully constrain the solution. The degenerate config-
urations of planes have been studied in [5], [10], [14], and [16].
In our previous work [5], the degeneracy was detected by
singular value decomposition (SVD) of a matrix constructed
by the plane normals. The singularity in the solution to pose
estimation was then eliminated by a scan-matching process in
the plane parameter space. The degenerate configurations were
also discussed in [10], where the five-degree-of-freedom (5-
DoF) pose hypothesis was generated sequentially from planar
surface segments using the extended Kalman filter, under the
assumption that typical indoor scenes contain at least two
dominant nonparallel planar surfaces. The other translational
DoF was determined by a voting scheme using planar surfaces
and line segments. However, the assumption does not always
hold true because, in some circumstances, the robot only
observes parallel planes in indoor scenes. In [16], a random
sample consensus (RANSAC) framework was adopted to
generate camera pose hypotheses using both point-to-point
and plane-to-plane correspondences. The nondegenerate con-
figurations of points and planes were discussed. In summary,
the aforementioned works only empirically considered how
much a plane contributed to the estimation of the camera pose.
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In the work of [14], an observability analysis was performed
for the linearized-aided inertial navigation system (INS) with
heterogeneous geometric features (point, lines, and planes).
However, the analysis is based on an INS framework and
cannot be directly applied to the scan-alignment for a depth
sensor. To the best of our knowledge, a thorough quantitative
analysis on how a single plane or a set of planes constrain the
pose estimation of an RGB-D camera has never been given.

In case the extracted planes are insufficient to fully constrain
the motion estimation, additional information is required.
In [17], an inertial measurement unit (IMU) was used to
deal with the degeneracy problem in RGB-D SLAM. Though
the IMU information can impose additional constraints on the
motion estimation, the calibration of the two sensors and the
drift of IMU data need to be considered. Another way to
handle the degeneracy problem is to combine other features.
The most widely used one is the visual feature extracted from
RGB images [13], [18], [19], which is a preferable choice
in the textured scenes under good lighting conditions. In the
work of [18], point features and planar segments were com-
bined in the camera tracking and map construction. In [13],
planes were used together with the point, and line features
to implement scan registration, and the back-end optimization
was implemented in [19] to achieve a complete SLAM system.
However, in textureless scenes, the visual features can hardly
be extracted. Furthermore, the extraction of visual features is
very sensitive to the changes in illumination conditions and
fails to work in low-light conditions. In many applications,
mobile robots are required to work in dark environments, such
as patrolling a building at night and working underground
in a coal mine. Therefore, the ability to navigate in dark
environments is indispensable for mobile robots.

Apart from the point feature, the edge is another kind of
popular feature. The edges present structure information of the
environment and have been shown to have good performance
in RGB-D SLAM or visual odometry (VO) systems [20]–[22].
The Canny-VO system proposed in [20] achieved the robust
tracking by a 3-D–2-D edge alignment based on the nearest
neighbor fields. In [21], a robust edge-based SLAM system
was built, and a local sliding window optimization over the
keyframes was used to refine the depth of edges, the cal-
ibration parameters and the camera poses. The edge-based
RGB-D SLAM system in [22] was proposed for dynamic
environments, and a static weighting method was designed for
edge-points to indicate the likelihood of each point being part
of the static scene. The above-mentioned works demonstrate
the efficiency of edge features. For an RGB-D sensor, two
types of edges are available, i.e., the edges extracted from
RGB images and the ones from depth images. Similar to
the image feature points, the RGB edges still suffer from
sensitivity to the changes in illumination conditions. Therefore,
we use the depth edge information [23] to disambiguate
the solutions when planes cannot fully constrain the motion
estimation. Note that, calculating the camera poses using the
edges extracted from two successive frames is essentially a 3-
D curve registration problem. It has been illustrated in [24] that
indiscriminately using all the points measured from a curve
for registration will inordinately slow down the convergence

of estimation or even find a wrong solution. The works of [25]
and [26] analyzed the stability of the estimated transformation
and selected the points to maximize stability. A normal-space
sampling (NSS) method was proposed for the widely used
iterative closest point (ICP) algorithm in [27]. The rationale of
NSS was to sample enough constraints in the normal space to
determine all the components of transformation. The approach
in [24] extended the NSS and the proposed dual-NSS (DNSS)
to sample points in both translational and rotational normal
spaces such that the translational and rotational components
are properly constrained. For all the aforementioned studies,
the points cannot be quantitatively evaluated and selected
to constrain some specific dimensions of the 6-D space of
rigid transformation. Furthermore, when the point features
are combined with other kinds of features, the constraints
provided by each kind of feature need to be taken into
account separately in the feature selection, which has not
been addressed in previous studies. As a result, the existing
methods are not capable of dealing with our situation, in which
some of the components are already strongly constrained by
plane features, while the others are unconstrained. To fully
fuse the edge information with the planes, the edge-points
need to be thoroughly evaluated and selected to determine
the components of motion in the subspace that cannot be
constrained by planes. This problem has remained unexplored
in previous methods.

In this article, we develop an RGB-D SLAM system to
address the aforementioned issues. A seamless fusion of planes
and edges is proposed for an accurate and robust motion esti-
mation, which is achieved based on constraint analysis and an
adaptive weighting algorithm. The constraint analysis is per-
formed to analyze how the planes constrain motion estimation.
The constrained subspace of motion is explicitly represented,
and a quantitative measure of the constraint strength provided
by planes is given. Using the results of constraint analysis,
an adaptive weighting algorithm is designed to automatically
assign different weights to edge-points according to their
constraints on the motion in the subspace that the planes
cannot constrain. In addition, a probabilistic plane fitting
algorithm is proposed, which improves the accuracy of the
fitted plane model and further benefits the plane-based motion
estimation. The error model of a depth sensor is exploited to
consider the effect of measurement noises varying with the
location of 3-D points. In this way, the plane fitting process
is less affected by the points with large measurement noises,
and the estimated planes are more fitted to the more accurately
measured points.

The original contributions are summarized as follows.
1) A seamless fusion of planes and edges is proposed to fully

constrain the motion estimation. The constraints provided
by both planes and edges are utilized in the fusion process.
The seamless fusion makes the problem of motion estima-
tion remain well-posed in all circumstances and also gives
a new perspective to the feature fusion problem.

2) An analysis is performed on the constraints of planes on
the estimation of the camera motion, and an explicit rep-
resentation of the constrained motion subspace is derived.
A quantitative measure of the constraint strength on a given
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Fig. 1. Overview of the plane-edge-SLAM system. The red boxes contain
main contributions of this article.

camera motion is presented. The analysis results can be
used in not only the fusion of planes and edges but also the
identification of singular solutions to the motion estimation.

3) A probabilistic plane fitting algorithm is proposed to fit
a plane model using noisy points extracted from a depth
image. The estimated plane model is more adaptive to mea-
surement noises, which benefits the plane-based estimation
of the camera motion.

The rest of the article is organized as follows. The system
overview is presented in Section II. The probabilistic plane
fitting algorithm is developed in Section III. The seamless
fusion of planes and edges is presented in Section IV. The
loop closing and pose-graph optimization are executed in
Section V. Thorough experimental evaluations are presented
in Section VI. Conclusions are drawn in Section VII.

II. SYSTEM OVERVIEW

The architecture overview of the plane-edge-SLAM
system is shown in Fig. 1, which is composed of
two parts: the frontend (plane-edge-based VO and
plane-edge-VO) and the backend. In the plane-edge-VO,
planar segments and edges are extracted by the approaches
proposed in [5] and [23], respectively. It needs to be pointed
out that both the two features are extracted from depth
images captured by an RGB-D camera, as shown in Fig. 1.
In the probabilistic plane fitting module, a plane model is
fitted to the noisy points in each planar segment. The planes
and edges are then fused in the plane-edge-fusion module,
which consists of two submodules: the constraint analysis
and the edge-point weighting. In the constraint analysis
module, an explicit representation of the constrained motion
subspace is derived. Using the results of constraint analysis,
the edge-point weighting module adaptively assigns different
weights to edge-points. The output of edge-point weighting
is fed into two modules afterward. The first is the edge-point
selection module, which excludes edge-points with small
weights. The second is the RGB-D camera motion estimation
module, in which the weights are used to balance two kinds
of residuals in the cost function.

The backend constructs the pose graph in the process of
incremental motion estimation and searches for possible loop
closures in the pose graph. Once a loop closure is detected,
an additional constraint is added, and then the pose graph is
optimized to achieve a complete SLAM system.

III. PROBABILISTIC PLANE FITTING

In order to extract a plane from the point cloud captured
by an RGB-D camera, two steps are involved, i.e., segmenting
planar regions from the point cloud and fitting an infinite-plane
model to each planar region. The fitted plane is essentially
a high-level representation of the raw data points, and its
parameters (the normal of the plane and the vertical distance
from the origin to the plane) are used in the calculation of
camera motion. Thus, the accuracy of plane fitting has a
significant impact on the results of motion estimation. In this
article, segmentation of the planar regions is performed by the
statistical information grid (STING)-based method proposed in
our previous work [5].

The most widely used method to fit a plane model to a set
of noisy points is the least squares (LS) method [28]–[30].
The cost function of the LS method is the sum of vertical
distances from each point to the plane. In LS fitting, the point-
to-plane distance of each point contributes equally to the cost
function. In other words, the confidence in the measurement
of each point is assumed to be the same regardless of
the location of the point. However, as verified in previous
researches [31]–[33], for a depth sensor, uncertainty of the
measurement of a 3-D point varies along with its location.
If the points with a large uncertainty are treated equally with
those with a small uncertainty, the estimated plane model will
be inaccurate, which will further decrease the precision of the
motion estimate. Therefore, when fitting a plane, two aspects
should be considered. First, the estimated plane model should
be more fitted to the points that are measured more accurately.
Second, the uncertainty needs to be propagated from the
depth and pixel measurements to the point-to-plane distances.
In this section, a probabilistic plane fitting method is designed
to address the two aspects.

We first segment a set of 3-D points that comes from
a planar surface in the scene from a point cloud by the
STING-based plane segmentation method [5]. The point set
is denoted by { pπ j } j=1,...,Npπ , where pπ j ∈ R3 is the location
of a 3-D point on the planar surface and Npπ represents the
number of points. Assuming that the measurement noise of
pπ j follows a zero-mean Gaussian distribution with covariance
C pπ j , which is propagated from the variances of the depth
measurement and pixel coordinates, respectively, to C pπ j

C pπ j = (K−1ũ j )ρ
2
z j (K−1ũ j )

T

+ (z j k1)ρ
2
u j (z j k1)

T + (z j k2)ρ
2
v j (z j k2)

T (1)

where K is the intrinsic matrix of a depth camera and ki , i =
1, 2, 3 is the i th column of K−1. ũ j is the homogeneous
representation of the pixel coordinates u j = [u j , v j ]T cor-
responding to pπ j and ρ 2

u j , ρ
2
v j are the variances of u j , v j ,

respectively (ρu j and ρv j are both set to 1/2 pixel in the
experiments). z j and ρ 2

z j are the depth value of the point
pπ j and its variance, respectively. For different kinds of
depth sensors, e.g., depth sensors based on structured light
(SL) [33], [34] and time-of-flight [32], [35], the measurement
noise is modeled differently and ρ 2

z j is assigned accordingly.
It is worth pointing out that the error model of any kind of
depth sensor can be involved in the proposed probabilistic
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Fig. 2. Signed distance lπ j from a 3-D point pπ j to the plane π . lπ j equals
zero when pπ j lies exactly on π . (Left) lπ j is positive when −nT pπ j < d,
i.e., pπ j lies at the side of the plane π , where the origin of the coordinate
frame lies. (Right) Otherwise, lπ j is negative.

plane fitting method, which does not rely on specific models
of measurement noises. In our experiments, the error model
proposed in [33] is adopted for the quantitative evaluations in
Sections VI-A–VI-E, because the TUM data set is collected
using the SL-based depth sensor [36] and the depth noise
of Microsoft Kinect 1.0 is simulated in the ICL-NUIM data
set [37]. In the real-world experiments in Section VI-F,
we use the error model proposed in [35] for the Microsoft
Kinect 2.0.

The fitted plane is denoted by π = [nT , d]T , where n is the
unit normal of the plane (pointing to the origin of the camera
coordinate frame) and d is the vertical distance from the origin
to the plane. Define the signed distance lπ j from pπ j to π as
shown in Fig. 2

lπ j = nT pπ j + d. (2)

lπ j follows a zero-mean Gaussian distribution with variance

ρ 2
lπ j = ∂lπ j

∂ pπ j

T

C pπ j

∂lπ j

∂ pπ j
= nT C pπ j n. (3)

The squared Mahalanobis distance D2
l (lπ j , n, d) of lπ j is

D2
l (lπ j , n, d) = l2

π j

ρ 2
lπ j

= (nT pπ j + d)2

nT C pπ j n
. (4)

The estimate of π = [nT , d]T is computed by minimizing

E(n, d) =
Npπ�
j=1

D2
l (lπ j , n, d). (5)

By taking the partial derivative of E(n, d) with respect to d
and setting it to zero, the estimate of d can be obtained by

d∗ = −nT pG(n) (6)

where pG(n) is the weighted centroid of all the points.

pG(n) =
�Npπ

j=1 c j (n) pπ j�Npπ

j=1 c j (n)
(7)

c j (n) = (nT C pπ j n)−1. (8)

By substituting (6) into (5), E(n, d) can be rewritten as

E(n) = nT S(n)n (9)

S(n) =
Npπ�
j=1

c j (n)( pπ j − pG(n))( pπ j − pG(n))T . (10)

From a geometrical point of view, S(n) is a weighted scat-
ter matrix with a weighted centroid pG(n), which gives

information about the dispersion of the noisy points around
pG(n). The weight c j (n), as defined in (8), is the reciprocal
of ρ 2

lπ j , which is propagated from the measurement covari-
ance C pπ j . From (8) and (10), we know that a point with
a large uncertainty corresponds to a small weight c j (n), and
thus, has a small influence on the minimization of E(n). With
n being a unit vector, the minimum of (9) is obtained when n
equals the eigenvector of S(n) corresponding to the smallest
eigenvalue. However, the minimization of (9) cannot be solved
analytically because S(n) is a function of n. When c j (n) is
set to 1, the minimization of E(n) degrades to the general
LS problem.

Although the minimization of (9) can be iteratively solved
by nonlinear optimization, it is time consuming and likely
to get trapped into local minima. In addition, because n is
constrained on the unit sphere in R3, the optimization needs
further constraints on the variable. Therefore, we substitute
S(n) in (9) with S(nLS), where nLS is the LS estimate of n,
i.e., the eigenvector corresponding to the smallest eigenvalue
of SLS

SLS =
Npπ�
j=1

( pπ j − pG_LS)( pπ j − pG_LS)
T (11)

pG_LS = 1

Npπ

Npπ�
j=1

pπ j . (12)

Then, the solution n∗ can be obtained by

n∗ = arg min
n

nT S(nLS)n. (13)

Since S(nLS) is independent of n, (13) can be solved analyt-
ically and the solution n∗ is the eigenvector corresponding to
the smallest eigenvalue of S(nLS). Although we may sacrifice
a little optimality due to the substitution of S(n) with S(nLS),
it yields a better solution than the LS fitting and much faster
performance than the iterative method. As aforementioned,
S(nLS) is a weighted scatter matrix of the measured points
and c j (nLS) is computed by the measurement covariance C pπ j

as well as the LS estimate nLS of the normal. The point with
a small uncertainty along the nLS direction will be assigned
a large weight, as in (8). Therefore, the plane estimated by
our algorithm will be more fitted to the points with small
uncertainties along the nLS direction and less affected by
points with large measurement noises. In comparison, in the
LS method, all the measured points are treated equally in
the computation of SLS, as in (11). The estimation result is
prone to be inaccurate due to the influence of points with large
measurement noises.

The uncertainty of the plane parameters can be represented
by the covariance estimated by the inverse of the Hessian
matrix of E(n) evaluated at n∗, d∗ [38]

C−1
π =

⎡
⎢⎢⎣

∂2 E

∂n2

∂2 E

∂d∂n
∂2 E

∂n∂d

∂2 E

∂d2

⎤
⎥⎥⎦










n∗,d∗

=
Npπ�
j=1

c j

�
pπ j pT

π j pπ j

pT
π j 1

�
.

(14)
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IV. SEAMLESS FUSION OF PLANES AND EDGES

In this section, the seamless fusion of planes and edges is
presented. The motion of the RGB-D camera between two
successive frames is estimated by scan alignment fusing the
information of planes and edges, as presented in Section IV-A.

Although the planes can be reliably extracted and associ-
ated, the degeneracy in the plane-based motion estimation is
unlikely to be avoided because of the narrow field of view
and the limited depth range of the RGB-D camera [5]. The
plane-based motion estimation problem may be ill-posed for
some spatial configurations of planes (for instance, all the
extracted planes are parallel). Thus, an explicit representation
for the constrained subspace of camera motion estimate and
a quantitative measure of the constraint strength on a given
motion are essential prerequisites to fully and seamlessly fuse
the planes with other features to fulfil the motion estimation.
To this end, a thorough analysis of how the planes constrain
the motion estimation is presented in Section IV-B.

In our method, the edges [23] are used to disambiguate the
motion estimation when the planes cannot provide sufficient
constraints. Two types of edges extracted from the depth
images in [23] are used in this article, i.e., the occluding
edges and the high curvature edges. Note that the RGB edges
extracted from the images in [23] are also suitable to be used
in our method in good lighting conditions. However, similar
to the visual feature points, the RGB edges are sensitive to
changes in illumination conditions and are not able to work
in the dark indoor environments. Hence, we only use depth
edges in our implementation. Then, a weight that is adaptively
assigned to each edge-point is computed in Section IV-C
fusing the information of planes and edges.

A. Plane-Edge-Fusion-Based Scan Alignment

The camera motion between two successive frames is
calculated via an ICP-like scan alignment, in which two
different kinds of primitives, i.e., planes and edge-points, are
involved. The residual errors of the two kinds of primitives
are defined in different spaces and are inappropriate to be
treated equally in the overall cost function. In our method,
the contribution of each edge-point to the cost function is
tuned adaptively according to the constraints provided by
planes. Thus, the information of edges is fused with the
planes to determine all the components of camera motion.
In each iteration, the planes and edge-points observed in the
current frame are associated with those in the reference frame,
respectively, using the nearest-neighbor approach [39], [40].
Then, a transformation between the two successive frames is
solved by minimizing a cost function composed of residual
errors between each primitive and its correspondence. Specif-
ically, the matched planes are denoted by {cπ i ,

rπ i }i=1,...,Nπ

and matched edge-points by {c pk,
r pk}k=1,...,Np , where π i

represent the i th plane, pk represents the coordinates of the kth
edge-point, the presuperscripts c and r denote the current and
reference frames, respectively, and Nπ and Np are numbers
of the plane and edge-point pairs, respectively. The camera
motion is represented by ξ = [tT ,ωT ]T ∈ R6. The exponential
of ω∧ ∈ so(3) (ω∧ is the skew-symmetric matrix associated

with ω ∈ R
3) is a 3D rotation denoted by R ∈ SO(3). And

t ∈ R3 is the translation. The cost function for the plane-edge-
based motion estimation is designed as

F(ξ) =
Nπ�
i=1

eT
π i�π i eπ i + Wp

Np�
k=1

wpk eT
pk�pkepk . (15)

The residual vectors eπ i and epk measure how well the esti-
mated motion ξ aligns the planes and edge-points, respectively.
eπ i is calculated by

eπ i = cπ i − T (rπ i , ξ ) (16)

where T (rπ i , ξ ) represents the plane transformed from rπ i

by ξ , which is computed by

T (rπ i , ξ ) =


R 03×1

−tT R 1

� 
r ni
r di

�
. (17)

�π i is the information matrix of the residual vector eπ i and
is computed by the inverse of cCπ i + r Cπ i , where Cπ i is
the covariance matrix of π i and is given by (14). Likewise,
the residual vector for edge-points epk is calculated by

epk = cpk − T (rpk, ξ ) (18)

where T (r pk, ξ ) is the edge-point transformed from
rpk by ξ

T (r pk, ξ ) = R · rpk + t. (19)

The information matrix �pk is given by the inverse of
cC pk + r C pk , where C pk is the covariance matrix of pk , and
will be calculated in Section IV-C. In each iteration of ICP,
(15) is minimized by the Gauss–Newton method to solve the
transformation that best aligns the two scans.

The key innovation of the cost function (15) is the intro-
duction of the weights Wp and wpk, k = 1, . . . , Np , which
is the essential part of the plane-edge-fusion framework. Note
that the weights are not manually set. They are automatically
computed according to the constraints provided by the planes
and edges on the motion estimation, and the computation
method is presented in Section IV-C. The adaptive weighting
algorithm plays a key role in the seamless fusion of planes
and edges. Wp is used to balance the contribution of two
different kinds of features to the overall cost function in the
optimization. wpk is computed for each edge-point according
to the constraints provided by this edge-point and the planes
and is used to provide enough constraints to determine all the
components of camera motion. In this way, the degeneracy
in the plane-based motion estimation can be eliminated, and
the problem remains well-conditioned, i.e., the camera motion,
along with each dimension of the motion space, can be
determined with certainty.

B. Constraint Analysis for Planes

If the robot only extracts the plane features and uses them as
the primitives in scan matching, the calculation of the robot
motion may suffer from degeneracy. In this case, additional
information is needed to fully constrain the solution. To this
end, the singular solutions to the problem should be identi-
fied beforehand, and a quantitative measure of the constraint
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strength should be made available. In this section, we first
demonstrate that a single pair of matched planes can only
partially constrain the 6-DoF camera motion, and the uncon-
strained subspace is explicitly represented. Then, the analysis
process is extended to the case of multiple plane pairs. The
unconstrained subspace is spanned by multiple basis vectors,
which are obtained by an eigenvalue decomposition (EVD)
process, and the constraint is quantitatively measured by the
eigenvalues.

We first consider a single pair of planes {cπ i ,
rπ i }. The

Jacobian of eπ i with respect to ξ can be computed by

Jπ i = ∂eπ i

∂ξ
=


03×3 (R · r ni )

∧
(R · r ni )

T −tT (R · r ni )
∧
�
. (20)

The camera motion that cannot be constrained by {cπ i ,
rπ i }

lies in the null space of Jπ i , which is denoted by null(Jπ i )

null(Jπ i ) = {ξ ∈ R
6 | Jπ i ξ = 0} =


μ1 t1 + μ2 t2
μ3 R · r ni

�
(21)

where t1 and t2 are orthogonal unit vectors spanning the plane
vertical to R·r ni , and μ1, μ2, μ3 ∈ R. It can be seen from (21)
that only three DoFs of the camera motion can be constrained
by {cπ i ,

rπ i }.
Then, we consider the case of multiple plane pairs

{cπ i ,
rπ i }i=1,...,Nπ . The variation of eπ i caused by an infin-

itesimal change in the camera motion dξ is represented by
deπ i = Jπ i dξ . Summing the squared variations of residuals
over the set of plane pairs {cπ i ,

rπ i }i=1,...,Nπ results in

Nπ�
i=1

deT
π i�π i deπ i = dξT

�
Nπ�
i=1

JT
π i�π i Jπ i

�
dξ . (22)

We denote �π = �Nπ
i=1 J T

π i�π i Jπ i and it contains informa-
tion about the distribution of the Jacobians of residuals over
all the matched planes. The EVD of �π can be computed by

�π = Qπ�π QT
π =

6�
l=1

λπl qπl q
T
πl (23)

where λπl , l = 1, . . . , 6 are the eigenvalues of �π , arranged in
nonincreasing order, and qπl , l = 1, . . . , 6 are the correspond-
ing eigenvectors. Note that qπl forms a basis in the 6-D space
of a rigid motion, and λπl indicates a measure of the constraint
strength provided by the matched planes to the camera motion
along qπl . For example, applying a transformation in the
direction of qπ1 corresponding to the largest eigenvalue λπ1
will cause the largest change in the residuals, while the
direction of qπ6 corresponding to the smallest eigenvalue λπ6
will cause the smallest change. The degeneracy occurs when
there exists at least one zero eigenvalue λπl = 0(∃l). All the
eigenvectors corresponding to the zero eigenvalues span the
null space of �π , in which the pose ξ cannot be constrained.

The above-mentioned analysis offers a fundamental to the
fusion of planes and edges. In a seamless fusion, the contribu-
tions of planes and edges to the overall cost function should
be complementary to each other. That is, for a given camera
motion ξ , if it cannot be constrained by the planes, the edge-
points that can strongly constrain ξ should be adaptively
assigned large weights. Therefore, it is of great importance

to providing a quantitative measure of the constraint strength
along each dimension of the motion space. In Section IV-C,
the strength of the constraint provided by the edge-points along
each direction qπl , l = 1, . . . , 6 is measured, and the weights
Wp and wpk, k = 1, . . . , Np in (15) are computed by fusing
the information provided by planes and edges.

The matrix �π in (23) can also be used directly to identify
the degenerate configurations of planes. In order to relate the
degenerate cases to spatial configurations of planes, the null
space of �π is described by the parameters of planes with the
Jacobians Jπ i calculated at a given camera pose. Specifically,
at the pose ξ = 0

�π |ξ=0=
Nπ�
i=1


�ddi · r ni

r nT
i

r ni�
T
ndi

r n∧
i

r n∧T
i �ndi

r nT
i

r n∧T
i �nni

r n∧
i

�
(24)

where �nni , �ndi , and �ddi are the top-left 3 × 3, top-right
3×1, and bottom-right 1×1 submatrices of �π i , respectively.
Define the matrix M = �Nπ

i=1
r ni

cnT
i [5] and compute its

SVD as

M = U�V T = λ1u1v
T
1 + λ2u2v

T
2 + λ3u3v

T
3 (25)

where U = [u1, u2, u3] and V = [v1, v2, v3] are 3 × 3
orthonormal matrices, and � = diag{λ1, λ2, λ3} with λ1 ≥
λ2 ≥ λ3. Two cases of degeneracy are summarized as follows.

1) If λ1 ≥ λ2 > λ3 = 0, r nT
i u3 = 0 holds true for all i =

1, . . . , Nπ . In this case, the 1-DoF camera motion ξ1D =
[μuT

3 , 0T ]T (μ ∈ R) satisfies ξT
1D�π |ξ=0 ξ1D = 0.

In other words, ξ1D cannot be constrained by the matched
planes. This degenerate case corresponds to the configu-
ration that the normal vectors are coplanar.

2) Likewise, if λ1 > λ2 = λ3 = 0, r ni (i = 1, . . . , Nπ )
satisfies r nT

i u2 = 0, r nT
i u3 = 0 and r ni ×u1 = 0. In this

case, the 3-DoF motion ξ3D = [μ2uT
2 + μ3uT

3 , μ1uT
1 ]T

(μ1, μ2, μ3 ∈ R) cannot be constrained by the matched
planes. This degenerate case corresponds to the configu-
ration that the normal vectors of planes are collinear.

Note that the cases 1) and 2) correspond to the 5-DoF and
3-DoF constraint cases discussed in our previous work [5],
respectively. In [5], if the degeneracy is detected, the 5-DoF
(3-DoF) motion is determined by the planes and the extra
1-DoF (3-DoF) is solved by a scan matching process. Differ-
ently, in this article, the motion along each dimension of the
6-D space is constrained by the fused information provided
by both planes and edges. It is theoretically superior to the
previous method [5] and the reason is as follows. In most
circumstances, there exist l1 and l2 such that 0 < λπl1 � λπl2 .
In this case, the calculated motion has a large uncertainty
along qπl1 direction, which was not considered in [5].
In contrast, in this article, the edge-points that strongly con-
strain the motion along qπl1 direction will be automatically
assigned a high weight. Thus, the overall problem will become
well-posed.

C. Computation of Adaptive Weights

In this section, the covariance cC pk for each edge-point c pk
is estimated and the weights Wp and wpk in (15) are adaptively
computed based on analysis results in Section IV-B.
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The computation of cC pk is different from that of cC pπ j ,
which denotes the covariance of a point c pπ j lying on a plane.
Dryanovski et al. [41] demonstrated that the uncertainty of
points around object edges could not be accurately modeled
by the random error model in [33], which is only well suitable
for describing the uncertainty of a point lying on a flat surface.
The covariance cC pk is estimated using the edge-points in
the spherical neighborhood of c pk with a given radius (the
radius is set to 0.1 m in our implementation). It is illustrated
in the Appendix that using cC pk in the computation of Fpk ,
the residual vector epk along the local edge direction of
c pk will have the least contribution to Fpk . This conclusion
characterizes the property of edge-points that they provide a
little constraint on the camera motion along the edge direction.
The property will be taken into account when computing the
constraint strength provided by the edge-points, along each
direction qπl , l = 1, . . . , 6.

In the following, details about how to compute the weights
Wp and wpk are given. The Jacobian of the residual epk with
respect to ξ can be calculated by

J pk = ∂epk

∂ξ
= [−I3×3 (R · r pk)

∧]. (26)

Similar to the constraint analysis on planes, a matrix � pk =
J T

pk�pk J pk is defined and the effect of the covariance matrix
cC pk is involved in the information matrix defined by �pk =
(cC pk + r C pk)

−1. Then, compute λpkl = qT
πl� pkqπl . The

value of λpkl gives a quantitative measure of the constraint
strength provided by {c pk,

r pk} on the qπl direction, which is
used together with the constraint strength (measured by λπl )
provided by planes to compute the weight wpk

wpk =
6�

l=1

νpkl

νπl
=

6�
l=1

λpkl
� �Np

k=1 λpkl

exp
�
α
�

λπl
λπ1

� . (27)

The weight wpk in (27) is adaptively computed by the con-
straints on motions along all the basis vectors qπl , l = 1, . . . , 6
provided by both the planes and edge-points. Specifically, for
each direction qπl , the numerator νpkl represents the propor-
tion of the constraint from one edge-point pair {c pk,

r pk}
among all the pairs {c pk,

r pk}k=1,...,Np . νpkl is divided by νπl

which varies within the range [1, eα]. Note that if qπl lies in
the null space of �π , i.e., λπl = 0 (planes cannot constrain
the estimation of the motion along qπl ), the denominator νπl

equals 1 and νpkl is directly added to wpk . And if λπl > 0
(planes can constrain the estimation of the motion along qπl
and the constraint strength is quantified by λπl ), the value
of νπl is greater than 1 and νpkl is reduced (divided by
νπl > 1) before being added to wpk . Thus, the contribution
of {c pk,

r pk} to wpk is decreased according to the constraint
provided by planes along qπl . We adopt the exponential
function in the denominator because it increases faster as
(λπl/λπ1)

1/2 increases. In other words, as the constraint λπl

along qπl increases, the weight wpk decreases faster and the
contribution of the corresponding edge-point pair {c pk,

r pk}
will be more restrained. In this way, the weight wpk can
adaptively fuse the information of the planes and edges. The
impact of wpk on the overall cost function (15) is that the

edge-points constraining the motion in the null space of �π

contribute more to (15).
The weight wpk is also used in the selection of edge-points.

Because the amount of edge-points is much larger than that
of planes, using all the edge-points will greatly increase the
computational load. Furthermore, the edge-points with small
weights wpk have little contribution to motion estimation.
Therefore, exclusion of the edge-points with small weights
has little effect on the accuracy of motion estimation. The
selection of edge-points can largely increase the real-time
performance without affecting the accuracy of the algorithm.
In our implementation, the weight wpk is thresholded by 0.01,
and extensive experiments in different scenes demonstrate that
this threshold yields satisfactory performance.

As regards the coefficient α ≥ 0, it can be preset by users
according to the application requirements. If α is set to zero,
the weight of each edge-point is 1. In this case, the contribution
of each edge-point to the cost function (15) is not affected
by the planes. The larger α is, the more the contribution of
edge-points will be reduced. Therefore, if a large number of
planes are extracted from the scenes, a large α is more suitable.
On the contrary, in the scenes where the planes cannot be
stably extracted, α should be set relatively small. In our
experiments, α is set to 1.

The weight Wp is used to balance the contributions of two
different kinds of primitives. Because π i and pk are defined
in different spaces, the two terms of (15) may vary greatly
in magnitude. The weight Wp is computed by normalizing
the magnitude of the second term (corresponding to the edge-
points) of (15) with respect to the first term (corresponding to
the planes)

Wp =
�6

l=1 λπl�6
l=1

�Np
k=1 wpkλpkl

. (28)

V. LOOP CLOSING AND POSE-GRAPH OPTIMIZATION

Essentially, the motion estimator proposed in Section IV is
a VO for RGB-D cameras. Though it is sufficiently accurate
in a short period of time, the problem of error accumulation in
the VO is unavoidable. Therefore, the loop-closure detection
and backend pose-graph optimization of an SLAM system are
necessary.

Because the proposed motion estimator is sufficiently accu-
rate and mainly aims at the indoor environments with a rela-
tively limited area, we simply search loop closure candidates in
a spherical neighborhood around the current position to detect
a loop closure [42], [43]. Once a loop closure is detected,
a new edge is added to the pose graph. The accumulating
errors can be corrected by solving a nonlinear LS minimization
problem. The g2o framework [44] is applied to optimize the
pose graph.

VI. EXPERIMENTAL EVALUATION

In this section, the proposed probabilistic plane fitting and
plane-edge-based camera motion estimation are evaluated by
extensive experiments. The TUM [36] and ICL-NUIM [37]
RGB-D benchmarks are used in the assessments. The TUM
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Fig. 3. Comparison of accuracy of detected planes in terms of different evaluation metrics. (a) Angle between normals. (b) Difference of intercepts.
(c) Point-plane distance.

benchmark provides image sequences captured in indoor
environments with time-synchronized ground truth from an
external motion capture system. And the ICL-NUIM data set
includes a collection of hand-held RGB-D camera sequences
within synthetically generated environments. The test platform
for all the experiments is an onboard computer with an Intel
Core i5-3230M CPU at 2.6 GHz and 3.8-GB RAM.

The performance of the proposed probabilistic plane fitting
is compared with the widely used LS method in Section VI-A.
The adaptive weighting strategy in plane-edge-fusion
is evaluated in Section VI-B. In Section VI-C,
the plane-edge-VO is compared with three VO methods.
In Section VI-D, the plane-edge-SLAM system is implemented
and is compared with seven state-of-the-art SLAM systems.
In Section VI-E, the point-cloud map constructed based on
the estimated trajectory is evaluated and compared with three
plane-based SLAM systems. In Section VI-F, the plane-edge-
VO is run online in three different kinds of real-world indoor
scenes to demonstrate the efficiency and robustness of our
method.

A. Experiments on Plane Fitting

In this section, the probabilistic plane fitting method pro-
posed in Section III is evaluated. We use the synthetic RGB-D
data set ICL-NUIM [37] to obtain the ground truth of the
detected planes. The planes are first extracted from the 3-D
models of the synthetic scene and then used as the ground truth
for subsequent quantitative evaluations. Then, plane models
are fitted using the points on the planes with simulated
Kinect 1.0 sensor noise by the proposed probabilistic plane
fitting (referred to as Pr_PF) method and the LS plane fitting
(referred to as LS_PF) method, respectively. Three evaluation
metrics are used to compare the estimated planes and the
ground truth, i.e., the angle between normals, the difference
of intercepts and the average distance from the ideal points to
the estimated plane model. The comparison results are shown
in Fig. 3. It can be seen clearly that Pr_PF obtains better results
in terms of three metrics on all the sequences in ICL-NUIM.

To further demonstrate the effect of the fitted plane model
to the accuracy of the motion estimation, the two-plane fitting
methods are used in the plane-edge-VO, respectively, and
are run on five image sequences from the TUM benchmark.

TABLE I

COMPARISON OF ATE RMSE BETWEEN PLANE-EDGE-VOs
WITH Pr_PF AND LS_PF, RESPECTIVELY

The root-mean-square error (RMSE) of the absolute trajectory
error (ATE) is calculated for each image sequence, as shown
in Table I. It can be seen clearly from Table I that the Pr_PF
significantly improves the accuracy of the motion estimation,
compared with the LS_PF. The Pr_PF method takes account of
the measurement errors that are correlated with the coordinates
of 3-D points. As a result, the Pr_PF is less affected by
measurements with large uncertainties, and the resultant plane
model can provide a more accurate estimate for the ego-motion
of the camera.

B. Experiments on Plane-Edge-Fusion

In this section, the plane-edge-VOs with and without adap-
tive weighting scheme, respectively, are compared. In the
plane-edge-VO with uniform weighting, the weights of edge-
points are not adaptively computed and all set to 1 in the
optimization process. The RMSE of ATE is computed to
evaluate the accuracy, which is shown in Table II. We can
see that when the adaptive weighting scheme is applied,
the accuracy of plane-edge-VO is significantly improved.
By adaptively weighting the edge-points, the information
from both planes and edges is fused, and the problem of
camera motion estimation becomes well-posed, as discussed in
Section IV-C. In contrast, for the plane-edge-VO with uniform
weighting, the problem is likely to be ill-posed. Therefore,
the plane-edge-VO with the adaptive weighting scheme yields
better results in terms of accuracy.

The modulewise average runtime of each scan-alignment
is computed on the image sequences, and the results are
plotted in Fig. 4(a), which shows that the motion estimation
with adaptive weighting is much time saving than that with
uniform weighting. The corresponding detailed statistics for

Authorized licensed use limited to: Zhejiang Lab. Downloaded on December 30,2022 at 09:03:50 UTC from IEEE Xplore.  Restrictions apply. 



SUN et al.: PLANE-EDGE-SLAM: SEAMLESS FUSION OF PLANES AND EDGES FOR SLAM IN INDOOR ENVIRONMENTS 2069

Fig. 4. (a) Modulewise average runtime of each scan alignment of plane-edge-VO with (top) adaptive weighting and (bottom) uniform weighting, respectively.
(b) Average runtime of each scan-alignment w.r.t. the number of edge-points used in motion estimation. (c) Histogram of the quantity of edge-points.

TABLE II

ATE RMSES OF PLANE-EDGE-VOS WITH ADAPTIVE WEIGHTING
AND UNIFORM WEIGHTING, RESPECTIVELY

the plane-edge-VO with adaptive weighting is presented by the
boxplot in Fig. 5. Furthermore, the relationship between the
runtime and the number of edge-points is shown in Fig. 4(b),
which indicates that the average runtime increases along with
the increase of the number of edge-points. The histogram
in Fig. 4(c) gives the number of frames as a function of
the number of edge-points per frame. It can be seen that
much fewer edge-points are involved in motion estimation for
the plane-edge-VO with adaptive weighting. Because through
the edge-point selection described in Section IV-C, a large
number of edge-points (above 50% with the threshold being
set to 0.01) are excluded by thresholding the weight wpk of
each edge-point. As a result, the computational load is largely
reduced. Because excluded edge-points have little contribution
to the motion estimation, the exclusion of them has little
influence on the accuracy of the VO.

C. Evaluation of Visual Odometry

In this section, the plane-edge-VO is compared with three
other VO systems using geometric features, i.e., CPA-VO [45],
STING-VO [5], and Canny-VO [20]. The VO system is
achieved by a frame-to-frame incremental scan-alignment
without the loop closure and graph optimization. The CPA-VO
tracks the camera motion toward a reference frame and
a global plane model in an expectation–maximization (EM)
framework. For the STING-VO, the camera poses are calcu-
lated directly by plane features extracted from two successive
frames. When the planes cannot fully constrain the pose esti-
mate, an STING-based scan-alignment is performed to offer

Fig. 5. Statistics of modulewise runtime for the plane-edge-VO with adaptive
weighting scheme. (a) Plane extraction. (b) Plane fitting. (c) Edge extraction.
(d) Motion estimation.

remaining constraints [5]. Both CPA-VO and STING-VO use
plane features in the camera tracking process. The Canny-VO
is an efficient RGB-D VO system that is achieved by aligning
the Canny edge features extracted from the images. Tables III
and IV present the comparison results between the plane-edge-
VO and the other three VO algorithms. The results of the
Canny-VO and CPA-VO have been reported in [20] and [45],
respectively. Note that the EM tracking in the CPA-VO is
implemented with a GPU to support the real-time computation
of the algorithm.

The results in Table III show that the performance of the
plane-edge-VO is better than the other three state-of-the-art
VO systems in terms of ATE, except on the fr2/desk sequence.
Both the plane-edge-VO and STING-VO use planes as a high-
level representation of the raw data and use parameters of
planes to estimate the camera motion. In contrast, the CPA-VO
uses the dense image information and aligns it with the global
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TABLE III

COMPARISON OF ATE RMSE BETWEEN FOUR VO ALGORITHMS:
PLANE-EDGE-VO, CPA-VO [45], STING-VO [5],

AND CANNY-VO [20]

TABLE IV

COMPARISON OF ATE RMSE BETWEEN THREE VO ALGORITHMS:
PLANE-EDGE-VO, CANNY-VO [20], AND STING-VO [5]

plane model via a direct image alignment. It is the reason
that CPA-VO needs the GPU to support real-time computa-
tion. We can see from Table III that though the plane-edge-
VO uses plane parameters to represent the raw data, rather
than the dense image information, it can achieve a higher
accuracy of the estimated trajectory in most image sequences
than the CPA-VO. In addition, the plane-edge-VO presents
superior performance over the STING-VO in terms of ATE
and relative pose error (RPE), as shown in Tables III and IV.
As illustrated in Section IV-B, in the STING-VO, the motion
estimation problem may be ill-conditioned even though a full
6-DoF solution can be determined by planes. In this case,
the final solution may suffer from a large uncertainty in some
DoFs. In contrast, this issue is skillfully addressed in the
proposed plane-edge-VO algorithm through a seamless fusion
of planes and edges. As a result, better results can be achieved.
We also compare the plane-edge-VO with Canny-VO in terms
of ATE and RPE. It can be seen from Tables III and IV that
the plane-edge-VO also shows superiority over Canny-VO that
aligns edges with estimating the camera motion.

D. Evaluation of SLAM

In this section, the proposed plane-edge-SLAM system
is compared with seven state-of-the-art SLAM systems:
ORB-SLAM2 [46], RGBD-SLAM [42], PL-SLAM [47],
edgeSLAM [48], CPA-SLAM [45], ElasticFusion [49], and
STING-SLAM [5]. The ORB-SLAM2 [46] and RGBD-
SLAM [42] are among the most popular point feature-
based SLAM systems. The PL-SLAM [47], edgeSLAM [48],
CPA-SLAM [45], and STING-SLAM [5] are SLAM systems
using geometric features. The ElasticFusion [49] is a map
fusion-based SLAM framework. The experimental results are
given in Table V, where the results of ORB-SLAM2 are
obtained using the open-source implementation, and those of
other systems have been reported in their respective publica-
tions. It can be seen clearly that our method compares favor-

Fig. 6. Trajectories estimated by (left) plane-edge-SLAM and (right)
ORB-SLAM2, respectively, compared against ground truth trajectories.
(a) fr1/xyz. (b) fr3/nstr_tex_near.

ably to other state-of-the-art SLAM methods and is obviously
superior to other systems in the textureless scenes. The esti-
mated trajectories compared against ground truth trajectories
on two image sequences are plotted in Fig. 6 and compared
with ORB-SLAM2, which is widely acknowledged as the most
efficient and accurate open-source SLAM system. Further-
more, the trajectories and the point-cloud maps estimated by
plane-edge-SLAM in textureless scenes fr3/str_ntex_near and
fr3/str_ntex_far are shown in Fig. 7(a) and (b), respectively,
where the ORB-SLAM2 fails to track the camera because
insufficient visual features can be extracted.

E. Evaluation on Map Quality

In this section, the map of plane-edge-SLAM is com-
pared with that of three planes feature-based SLAM:
SA-SHAGO [19], STING-SLAM [5], and point-plane-
SLAM [50]. To quantitatively evaluate the quality of the
map, we use the synthetic RGB-D data set ICL-NUIM [37].
The synthetically generated living room (lr/kt0) scene in the
ICL-NUIM data set has an associated 3-D polygonal model,
which allows evaluation of the accuracy of map reconstruction.
The map quality is evaluated by the mean distance from each
point to the nearest surface in the ground truth 3-D model, as is
recommended in [37]. The first two columns of Table VI list
the comparison results of the four SLAM methods. It is obvi-
ous that the plane-edge-SLAM shows superior performance in
terms of both qualities of the map and the accuracy of the tra-
jectory. The heat map of the reconstruction is shown in Fig. 8,
in which the areas that are less accurately reconstructed are
more highlighted, which intuitively illustrates the quality of
all the areas in the constructed point-cloud map.

Apart from the quantitative evaluation on the quality of
the map, we run the four plane-based SLAM systems in two
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TABLE V

COMPARISON OF SLAM IN TERMS OF RMSE OF ATE

Fig. 7. Estimated trajectories and the generated point-cloud maps by plane-
edge-SLAM on the sequences (a) fr3/str_ntex_near and (b) fr3/str_ntex_far,
respectively.

TABLE VI

COMPARISON OF FOUR PLANE-BASED SLAM SYSTEMS

scenes with a similar structure from the TUM data set, one
of which has high texture (fr3/str_tex_far), and the other has
low texture (fr3/str_ntex_far). The RMSEs of ATE are listed
in the last two columns of Table VI, and it can be seen that the
plane-edge-SLAM achieves the best results on both sequences.
In addition, in the textureless scene, the SA-SHAGO and

Fig. 8. Heat maps of the reconstructions for four methods on the
lr/kt0 sequence of the ICL_NUIM benchmark. The reconstruction error is
indicated by the color bar at the right-hand side. (a) Plane-edge-SLAM.
(b) SA-SHAGO. (c) STING-SLAM. (d) Point-plane-SLAM.

point-plane-SLAM methods cannot localize the camera accu-
rately. Because both the SA-SHAGO and point-plane-SLAM
systems rely on the visual features to localize the camera
when plane features are insufficient to constrain the pose
estimation [19], [50]. And the sequence fr3/str_ntex_far is
captured in a textureless scene, and little visual features can
be extracted. As a result, both systems perform poorly in this
scene. In contrast, the proposed plane-edge-SLAM and the
STING-SLAM do not rely on the visual features, and thus, can
get favorable results in both textured and textureless scenes.
The estimated trajectories and the generated point-cloud maps
of the four methods on the sequence fr3/str_ntex_far are shown
in Fig. 9. The experimental video for this section is also
included in the submitted multimedia files.

F. Real-World Experiments

In this section, we test the proposed plane-edge-VO in three
different kinds of real-world scenes, i.e., a laboratory, a large-
scale corridor and challenging illumination scenes, respec-
tively. The results are presented in Sections IV-F.1–IV-F.3,
and the corresponding experimental processes are recorded in
the videos, which are submitted as Supplementary Materials.
No backend optimization is performed during the localization
and mapping process such that the performance of the plane-
edge-based camera motion estimation can be fully presented.
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Fig. 9. Trajectories and point-cloud maps estimated by the four plane SLAM
systems on the fr3/str_ntex_far sequence of the TUM benchmark. (a) Plane-
edge-SLAM. (b) SA-SHAGO. (c) STING-SLAM. (d) Point-plane-SLAM.

1) Laboratory Scene: In the first experiment, the robot is
joysticked around a laboratory, as is shown in Fig. 10(a). The
size of the laboratory is 12.00 m × 8.40 m, and the width of
the corridor is 2.35 m. It can be seen from Fig. 10(a) that the
3-D model of the environment is well constructed through an
incremental camera motion estimation, which is achieved by a
frame-to-frame registration based on planes and edge-points.
The results demonstrate that the proposed plane-edge-based
method can achieve accurate motion estimation in real-time
robot navigation. Four zoomed-in views of the point-cloud
map are given in Fig. 10(b)–(e). Note that the presented
point-cloud map is simply created by downsampled scan data
without any point of cloud fusion. It further demonstrates the
accuracy of the proposed method.

In addition, in the attached experimental video, we can see
that when the robot is moving through the corridor, a person
accidentally passes by (xxmin xxs∼xxmin xxs in the video
“video_real_world.mp4”). As shown from the trajectory of
the robot, only the estimation of the translational motion
along the direction of the corridor is affected by the moving
person. The estimate of the other 5-DoF motion is not affected,

Fig. 10. Point-cloud map generated by the plane-edge-VO algorithm in
a laboratory. The x-, y-, and z-axes of the camera coordinate system are
represented by green, blue, and red line segments, respectively. (a) Panoramic
view of the generated map. (b)–(e) Four zoomed-in views of the map.

and the reason is as follows. The estimate of the other five
DoFs is strongly constrained by the two nonparallel planes
extracted from the corridor scene (the floor and the walls).
And the plane extraction and fitting are not affected by the
nonplanar dynamic objects in the environments. However,
the translational DoF along the direction of the corridor
cannot be determined by planes, and the edge information is
needed to constrain the estimate of this translational motion.
However, edge extraction is affected by the moving object.
As a result, the estimation of the translation along the corridor
is influenced. In summary, though the plane-edge-VO is not
completely robust to the dynamic environments, the impact
of the moving object is relatively small because the plane
extraction and fitting are robust to the nonplanar moving
objects.

2) Large-Scale Corridor Scene: In the second experiment,
we test our method in a large-scale corridor environment,
as shown in Fig. 11(a). The size of the environment is
approximately 80 m × 60 m. The robot is joysticked along
the corridor and then is back to the start position. We can see
from Fig. 11(a) that the accumulated offset is very small after
traveling a distance of about 280 m, without any optimization
on the estimated trajectory. It strongly demonstrates the accu-
racy of the proposed method. Four images captured by the
camera and the corresponding zoomed-in views of the point-
cloud map are shown in Fig. 11(b)–(e), and the positions of the
robot when capturing the images are labeled in the panoramic
view in Fig. 11(a).

3) Challenging Illumination Conditions: The plane-edge-
VO is also performed in scenes under varying and low illumi-
nation conditions, respectively. During the experiment under
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Fig. 11. Point-cloud map generated by the plane-edge-VO algorithm
in a large-scale environment. (a) Panoramic view of the generated map.
(b)–(e) Four images captured at different positions which are labeled in (a),
and the corresponding zoomed-in views of the map.

Fig. 12. Point-cloud map generated by the plane-edge-VO algorithm under
varying illumination. (a) Panoramic view of the generated map. (b) and
(c) Image of the dark office and the corresponding zoomed-in view of the map.
(d) and (e) Image of the strong light from the corridor and the corresponding
zoomed-in view of the map.

varying illumination condition, the robot is joysticked into a
dark room with the light OFF and then back to a corridor in
the normal lighting condition, as shown in Fig. 12(b) and (d).
From the panoramic view Fig. 12(a) and the zoomed-in views
Fig. 12(c) and (e), we can see that the plane-edge-VO can
achieve good results under varying illumination condition.
Because our method utilizes only geometric features extracted
from the depth images, rather than visual features extracted
from the RGB images, it is robust to the changes of the lighting
condition.

Fig. 13. Point-cloud map generated by the plane-edge-VO algorithm
in a completely dark scene. (a) Panoramic view of the generated map.
(b) and (d) Two RGB images. (c) and (e) Corresponding zoomed-in views in
the map.

To further demonstrate the performance of our system in
low illumination conditions, an experiment is conducted in a
completely dark scene. The Kinect 2.0 is hand-held through
the darkroom, and the point-cloud map is generated along with
the tracking of the camera. The results are shown in Fig. 13.
We have also run ORB-SLAM2 [46], RGBD-SLAM [42], and
SA-SHAGO [19] in the same environment. But all of them fail
to track the camera because they cannot extract visual features
from such a dark background. It is worthwhile to point out
that under good illumination conditions, our method can also
be combined with the visual feature-based SLAM to further
enhance the performance of the system.

VII. CONCLUSION

In this article, the plane-edge-SLAM system has been
developed with the plane-edge-fusion and probabilistic plane
fitting. The constraint analysis for planes is a prerequisite
part of the fusion of planes and edges because it provides
a quantitative measure of the constraint strength. The analysis
result can also be used to identify the singular solutions to the
motion estimation problem in any plane-based SLAM system
since it gives an explicit representation of the unconstrained
subspace of motion. An adaptive weighting algorithm is elab-
orately designed for the seamless fusion of planes and edges.
The weights of the edge-points are adaptively computed based
on the quantitative measure of constraint strength on the
motion along each dimension of the motion space. To the
best of our knowledge, it is the first time that the result of
the constraint analysis is used in the fusion of planes and
edges. It can provide a novel point of view for the problem
of information fusion.

Authorized licensed use limited to: Zhejiang Lab. Downloaded on December 30,2022 at 09:03:50 UTC from IEEE Xplore.  Restrictions apply. 



2074 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 18, NO. 4, OCTOBER 2021

A probabilistic plane fitting algorithm has been proposed
to fit a plane model to the measured points. The plane fitting
is adaptive to various measurement noises corresponding to
the different depth values by exploiting the error model of the
depth sensor. Thus, the estimated plane model is more accurate
and robust to large measurement noises. The fitted plane is
further used in the estimation of the camera motion, and the
accuracy of the motion estimation can be largely improved.
Furthermore, the proposed probabilistic method can be easily
extended to other sensors, such as the binocular vision sensor,
the laser scanner, the 3-D lidar sensors.

In addition, the extraction of the two features, i.e., planes
and depth edges, is inherently insensitive to the illumina-
tion changes, and no RGB information is involved in the
processes of both plane fitting and motion estimation. As a
result, the plane-edge-SLAM system is definitely effective in
completely dark environments, which is demonstrated in real-
world experiments. Therefore, the plane-edge-SLAM is shown
to be an attractive complement to the state-of-the-art visual
SLAM system in the indoor scenes that are challenging for
the vision sensors.

APPENDIX

INFLUENCE OF EDGE-POINT COVARIANCE ON F(ξ )

In this appendix, we illustrate that using the cC pk in the
computation of Fpk , the residual vector epk along the local
edge direction of c pk has the least contribution to Fpk .

The eigenvalues of cC pk are denoted by γ j (arranged in
nonincreasing order and j = 1, 2, 3), and the corresponding
eigenvectors (unit vectors) are denoted by w j . Since cC pk is
estimated using the edge-points in the neighborhood of c pk ,
it is obvious that w1 is the local edge direction at the point
c pk and γ1 	 γ2 ≥ γ3. Thus,

1

γ3
≥ 1

γ2
	 1

γ1
. (29)

Then, we know that

�pk = cC−1
pk = 1

γ1
w1w

T
1 + 1

γ2
w2w

T
2 + 1

γ3
w3w

T
3 . (30)

Fpk can be written as

Fpk = eT
pk�pkepk

= eT
pk

�
1
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w1w

T
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γ2
w2w

T
2 + 1

γ3
w3w

T
3
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epk . (31)

Because the eigenvectors ω j ( j = 1, 2, 3) form a basis of R
3.

The residual vector epk can be represented by

epk = e1w1 + e2w2 + e3w3 (32)

where e j is the projected component of epk onto ω j . Then,
Fpk is calculated by

Fpk = 1

γ1
e2

1 + 1

γ2
e2

2 + 1

γ3
e2

3. (33)

As can be seen from (29) and (33), the projected component
of epk onto ω1 will have the least contribution to Fpk among
all the three components.
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