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ABSTRACT
A target tracking approach is proposed for mobile robots in this
paper to address the human-robot coexistence and collaboration
problem. The improved social force model (SFM) is applied to im-
prove the tracking performance of the robot in crowded environ-
ments. When the robot approaches the pedestrians or obstacles,
the tracking strategy is adaptively adjusted to avoid collision. The
inverse reinforcement learning (IRL) is used to learn the parame-
ters of the improved SFM, where the training data for the IRL is
collected in real-world scenes. An effective criterion is designed
to evaluate the tracking performance, which fully considers the
relationship between the robot and surrounding environments. The
experimental results demonstrate the effectiveness of the proposed
target tracking method.
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1 INTRODUCTION
When the robot tracks a moving target, it will unavoidably interact
with other humans as well as with the surroundings. As a result,
the human-robot collaboration is an increasingly studied topic in
the robotic field.

In recent years, the researches on human-robot collaboration
mainly focus on the iterative re-planning-based method. In [1], the
robot predicts the human motion by iteratively re-planning a trajec-
tory based on stochastic trajectory optimizer for motion planning
(STOMP). For the iterative re-planning-based method, it is vital to
know how to predict the human motion. The most widely-used
algorithms include the Gaussian mixture model [2–4], the hidden
Markov model [5, 6], the conditional random fields [7, 8], etc. In
[9], the user’s gaze is monitored to predict his or her task intent
based on the observed gaze patterns and the task actions are then
performed according to the predictions. And in [10], the collabora-
tive task is formulated as a two-agent planning problem and the
Markov decision process (MDP) is used to model the behaviors of
the robot as well as the human. In [11], the Bayesian human motion
intentionality predictor (BHMIP) is proposed, which is a long-term
human motion intentionality predictor based on geometric criteria.
The predictor calculate the probability that a human trajectory
reaches a destination to estimate the best destination.

The social force model (SFM) [12] is proposed to model the social
interactions. The SFM is based on the framework of self-driven
many-particle systems and simulates the pedestrian dynamics using
interaction forces. The behavior of pedestrians are affected not
only by the interaction forces but also by the self-driven forces. In
[13], the SFM is used to investigate the mechanisms of the panic
and jamming in crowds. The simulation of crowded dynamics of
pedestrians are performed to prevent dangerous crowd pressure
and find an optimal strategy for escape. The SFM is integrated with
a multi-hypothesis target tracker in [14] to achieve more robust
tracking behaviors and better occlusion handling. In [15], the SFM
is used to explicitly predict the next collision in order to avoid
it. In [16], the long-term behaviors of pedestrians are predicted
for the robot to provide them services, which is modeled through
transition probabilities between the sub-goals. And the directions
to the sub-goals are decided by the collision avoiding behavior and
are predicted by the SFM model. In [17], the abnormal behaviors
are detected and localized in crowd videos using the SFM by placing
particles over the image and estimating their interaction force. An

27

https://doi.org/10.1145/3462648.3462654
https://doi.org/10.1145/3462648.3462654
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3462648.3462654&domain=pdf&date_stamp=2021-06-22


RobCE 2021, April 22–25, 2021, Toronto, ON, Canada Qinxuan Sun, Shengming Zhang, Jing Yuan*, Xuebo Zhang, and Shuhao Zhu

SFM-based control scheme is proposed in [18] for robots navigating
in human scenes. The social proxemics potential field is constructed
for the robots to generate and modify the path smoothly.

For the target tracking in the presence of humans or other robots,
it is important to achieve harmonious coexistence between the ro-
bot and the environments. In this paper, to address the problem of
interaction during the target tracking, we propose an SFM-based
target tracking approach. Using the SFM, the robot can anticipato-
rily take actions to avoid collision when approaching pedestrians
or obstacles. Thus, the coexistence and collaboration between the
robot and humans can be achieved in the tracking process. The
parameters of the SFM are learned through the IRL algorithm. The
training data for the IRL are the pedestrian trajectories collected in
various real-world scenes, which makes the SFM more adaptive to
different environments in the tracking tasks. Furthermore, an effec-
tive criterion for the tracking is designed for a better evaluation of
the tracking performance.

2 SOCIAL FORCE MODEL-BASED TARGET
TRACKING

For the target tracking performed bymobile robots, it is unavoidable
for the robots to interact with other pedestrians, the environment
or the other robots. To exploit the social attribute of the robot, we
apply the SFM to describe the interaction between the robot and
other pedestrians as well as the obstacles to achieve a robust and
efficient tracking results.

2.1 Problem Formulation
The process of target tracking is illustrated in Fig. 1(a), where P
represents the current location of the moving target and R the
location of the robot. The green and blue arrows indicate themoving
directions of the target and robot, respectively. The angle between
the moving direction of the robot and the line connecting the robot
and target is denoted by φ. The kinematic model of a wheeled
robot is Ûxr = v cosθ , Ûyr = v sinθ , and Ûθ = ω, where [xr ,yr ,θ ]T
represents the pose of the robot w.r.t. the global coordinate system,v
andω are the linear and angular velocities of the robot, respectively.
The relative location of the target w.r.t. the robot is described by
the polar coordinates, as shown in Fig. 1(a). The actual distance
between the robot and target is represented by r . And Q is the
location where the robot is expected to arrive at and the distance
between Q and P is denoted by rd . The distance error is defined by
r̃ = r − rd . And the corresponding dynamics can be computed by
Û̃r = −v cosφ and Ûφ = ω + v

r̃+rd
sinφ.

2.2 Social Force Model
The SFM uses interaction forces to simulate the dynamics of pedes-
trians. Through the application of SFM, the complicated behav-
iors of pedestrians can be expressed by a function based on the
relative positions and velocities of the pedestrians. The SFM orig-
inally proposed in [12] is used in the simulation of crowds of in-
teracting pedestrians. In this paper, the SFM is used to describe
the interaction between the robot and pedestrians as well as ob-
stacles. Specifically, the social force of the robot is defined by
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Figure 1: (a) Illustration of moving target tracking by a mo-
bile robot. (b) Illustration of adjustment of the desired track-
ing distance.

Fr = f 0r +
∑Np
i=1 f r i +

∑No
w=1 f rw , where f 0r , f r i and f rw rep-

resent the self-driven force for the robot, the interaction force with
pedestrian i and with the obstaclew , respectively.

The self-driven force of the robot is calculated by f 0r =mr
vd
r −vr (t )
τr ,

wheremr is the mass of the robot,vdr is the desired velocity,vr (t)
is the actual velocity and τr is the time used for approaching the
desired velocity. In the tracking process, the desired velocity is
adjusted according to the location of the target, which is achieved
by the controller defined by (1).

v = vmaxU (r̃ ) cosφ

ω = −kφ −
vmaxU (r̃ ) cosφ

r̃ + rd
sinφ

(1)

The value range of k is (0, |ωmax | −
vmax
2rd ]. vmax and ωmax are

the maximum linear and angular speeds of the robot, respectively,
and r̃ + rd is the actual distance between the robot and the target.
AndU (r̃ ) can be defined by

U (r̃ ) =



−1 r̃ < −c(
r̃+c
c

)2
− 1 −c < r̃ ≤ 0

1 −
(
r̃+c
c

)2
0 < r̃ ≤ c

1 r̃ > c

(2)

where c is a pre-defined constant. By use of the controller (1), when
the robot is far from the target, it will move to the target at high
speed to compensate for the tracking distance error. When the
distance between the robot and the target reaches the desired dis-
tance rd , the robot will slow down to ensure both the efficiency
and safety.

In addition, the desired distance rd is adjusted according to the
moving speed of the target. Assume that the target is in front of
the robot and they are moving in the same direction, as illustrated
in Fig. 1(b). The robot begins to reduce the speed at the location A,
and when it reaches the location B, the speed of the robot is equal
to that of the target, i.e., v = vt , with vt representing the moving
speed of the target. The desired tracking distance is calculated
by r̂d = rd + c(1 −

√
1 − vt

vmax
). Therefore, the desired tracking

distance increases along with the moving speed vt of the target,
which avoids the possible collisions when the target is moving at a
high speed and guarantee the safety in the tracking procedure.
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Figure 2: (a) Division of the space around the robot according
to the taxonomy of distances. (b) Isolines of the weight w
when λ is set to different values.

The interaction force with the pedestrians is composed of three
parts, i.e., the repulsive interaction force f

r ep
r i , the body force f bdr i

and the sliding friction force f
f r i
r i , as defined by f r i = f

r ep
r i +

f bdr i + f
f r i
r i .

The repulsive interaction force f
r ep
r i is calculated by

f
r ep
r i = (w + µ)Ai exp

(
rr i − dr i

Bi

)
nr i , (3)

where Ai and Bi are constants characterizing the strength and
range of the interaction force, respectively, dr i denotes the distance
between the robot and the pedestrian i ,nr i is the normalized vector
pointing from the robot to the pedestrian i , and rr i = rr + ri is
the sum of their radii rr and ri . The weightsw and µ measures the
degree that the interaction force is affected by the orientation and
the motion tendency, respectively, which are described in detail in
the following.

Based on the concept of proxemics proposed in [19], the space
around a robot can be divided according to the taxonomy of dis-
tances, as shown in Fig. 2(a). In addition to the distance between
the robot and the pedestrians, the interaction force is also affected
by the orientation of the robot. When a pedestrian approaches the
robot from the front, it will produce larger interaction force. The
property is characterized by a weighting strategy and the weight is
computed byw = λ + (1 − λ)

1+cosφ
2 , where 0 ≤ λ ≤ 1 is a pre-set

parameter. The larger λ is, the more the force is affected by the
orientation. Fig. 2(b) shows the isolines of the weightw when λ is
set to 1, 0.8 and 0.5, respectively.

Furthermore, the motion tendency of the robot and the pedes-
trians is also considered. When the robot and the pedestrian move
toward each other, it is more likely that the collision occurs. To
address the affection of the motion tendency, we introduce the mo-
tion tendency factor, which is defined by µ = exp ((vr −vi ) · nr i ),
where vr and vi are the velocities of the robot and pedestrian i ,
respectively, nr i is the unit vector pointing from the robot to the
pedestrian. As defined in (3), when the robot and the pedestrian
tend to move toward each other, the interaction force between them
increases which are indicated by the value of µ.

The body force f bdr i is computed by f bdr i = k1G(rr i − dr i )nr i ,
where k1 is a constant coefficient and G(x) = x when x > 0, other-
wise, G(x) = 0. And the sliding friction force f

f r i
r i is calculated by
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Figure 3: The scenes to collect the dataset for the parame-
ter learning of interaction with the (a) pedestrians and (b)
obstacles, respectively.

f
f r i
r i = k2G(rr i − dr i )∆v

t
r itr i , where tr i is the tangential direction

and ∆vtr i = (vi −vr ) · tr i the tangential velocity difference.
The interaction force with the obstacle can be treated analo-

gously and is computed by

f rw = f
r ep
rw + f bdrw + f

f r i
rw , (4)

f
r ep
rw = (w + µ)Aw exp

(
rr − drw

Bw

)
nrw ,

f bdrw = k1G(rr − drw )nrw ,

f
f r i
rw = k2G(rr − drw )(vr · trw )trw .

(5)

In (5), Aw and Bw represent respectively the strength and range of
the interaction force, drw means the distance between the robot
and the obstacle, nrw denotes the normalized vector pointing from
the robot to the obstacle, and trw is the direction tangential to nrw .

3 IRL-BASED PARAMETER LEARNING FOR
SFM

In this paper, we use the IRL to learn the parameters of the SFM.
The training data for the IRL is collected at the College of Artificial
Intelligent in Nankai University and the camera used for data cap-
ture is Sony IMX362 with a focal length of 3.94mm. The collection
scene for the parameter learning of interaction with the pedestri-
ans is shown in Fig. 3(a) and the camera is positioned at a height
of 5.16m.. Two entrances into the hall are labeled by “1” and “2”,
respectively, the stairs leading to the 2nd floor is labeled by “3”, and
the corridor leading to other rooms in this floor is labeled by “4”.
Most of the pedestrians walks from location 1 or 2 to location 3 or
4, or vice versa, as shown in Fig. 3(a). The scene for the parameter
learning of interaction with the obstacles is shown in Fig. 3(b) and
the camera is positioned at a height of 1.6m. Pedestrians enter the
scene through the entrance labeled “5” and leave it through “6”, or
vice versa.

The pixel coordinates of a pedestrian is computed for each image
from the dataset, which are denoted by uk in the k-th frame. The
corresponding 3D coordinates xk of the pedestrian in the camera
coordinate system can be computed by the method proposed in
[20]. The trajectory of the pedestrian can then be denoted by X =
{x1,x2, · · · ,xN }, where N is the number of images in which the
pedestrian appears. And the instant velocity of the pedestrian can
be calculated by vk =

x k+1−x k
∆tk

, where ∆tk is the time interval
between the k-th and k + 1-th frames.
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Table 1: Results of the SFM parameter learning.

Parameter Ai Bi Aw Bw

Mean 8.50 0.56 5.50 0.44
Std. 5.10 0.20 2.10 0.21

Figure 4: The simulated trajectory (blue) based on the SFM
parameters learned by IRL compared against the real trajec-
tory (red) of the pedestrian.

For the trajectory X , the position xsk of the pedestrian at each
step can be simulated using the improved SFM introduced in Section
2.2. The reward function of IRL for the SFM parameter learning
are defined by {Ai ,Bi ,Aw ,Bw } = argmin{Ai ,Bi ,Aw ,Bw }

∑
k ∥xsk −

xk ∥. The results of the SFM parameter learning are listed in Fig.
1. Fig. 4 shows the simulated trajectory based on the SFM with
the learned parameters compared against the real trajectory of
the pedestrians. It can be seen that the two trajectories almost
overlap with each other, which demonstrates the effectiveness of
the IRL-based SFM parameter learning.

4 SIMULATION AND EVALUATION
In this section, an effective criterion is designed for the evaluation
of the target tracking performance. Then, the simulations are per-
formed on the improved SFM-based robot motion generation and
target tracking.

4.1 Evaluation Criterion
For a more effective evaluation of the target tracking, the criterion is
designed considering not only the distance and relative orientation
between the robot and target, but also the relationships between
the robot and other pedestrians or obstacles in the tracking process.

As illustrated in Fig. 1(a), the distance and relative orientation be-
tween the robot and target are important criteria for the evaluation
of tracking performance. If the robot comes too close to the target,
it is possible to collide with each other, which yields a threat to
safety. If the robot is far from the target, or if the target is out of the
FoV of the robot, it is likely for the robot to lose track of the target.
As a result, it is necessary to keep the suitable tracking distance and
orientation. Furthermore, the relative moving speed of the robot
w.r.t. the target is also significant in the tracking process. Assume
that the speeds of the robot and target are vr and vp , respectively,
and the relative speed is computed by ∆v = |vr −vp |. The utility
function of the relative speed is defined by fv = exp(−∆v). The
value of the utility function increases along with the decrease of the
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Figure 5: (a) Trajectories of the robot simulated using the
improved SFM (red) and traditional SFM (blue), as well as the
trajectories of pedestrians (black). (b) Orientation, (c) x and
(d) coordinates of the robot simulated using the improved
SFM (red) and traditional SFM (blue).

relative speed, indicating that the robot keeps tracking the target
in a stable state.

In addition to the tracking target, the relative relationships with
the surrounding environments are also important in the tracking
tasks of mobile robots. The minimum distance between the robot
and the closest obstacle or pedestrian is denoted by dmin . The corre-
sponding utility function is defined by fh =

dmin
2 when dmin ≤ 2,

and otherwise fh = 1. The value of the function indicate the influ-
ences of the surrounding environments to the tracking tasks of the
robot.

4.2 Robot Motion Simulation based on
Improved SFM

In this subsection, we use the improved SFM to generate the motion
of a mobile robot in a simulated hall environment in Fig. 5(a). The
hall has four entrances, which is labeled by “1”, “2”, “3” and “4”,
respectively, and the obstacles are represented by red circles with a
radius of 0.5m. In the experiment, two pedestrians are randomly
generated in the tracking process and the robot is supposed to
reach the goal without colliding with the pedestrians/obstacles
or disturbing the motion of the pedestrians. Fig. 5(a) shows the
trajectories of the robot using the improved and traditional SFM,
as well as the trajectories of the pedestrians. The orientation and
position of the robot is plotted in Fig. 5(b)(c)(d), respectively. It can
be seen that the improved SFM with parameters learned by the IRL
algorithm generates more smooth and anticipatory motion for the
robot.

4.3 Target Tracking based on Improved SFM
The improved SFM with parameters learned by the IRL algorithm
is applied to the target tracking task of the mobile robot and is
compared with the tracking based on the controller defined by
(1). The experiments are executed in the simulated environment
in Fig. 5(a) and three pedestrians are randomly generated in the
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Figure 6: Comparison results of target tracking.

simulation. The relative distance and angle between the robot and
target are plotted in Fig. 6(a) and (b), respectively. For the SFM-
based target tracking, when the robot approach the pedestrians or
obstacles, the orientation is adjusted to avoid any possible collision.
And the values of utility functions defined in Section 4.1 are plotted
in Fig. 6 (c) and (d), respectively. In the SFM-based tracking, the
velocity of the robot is more similar with that of the target, which
increases the safety and comfort of the complete human-robot
system. In summary, compared with the controller-based tracking,
the improved SFM is more suitable for the target tracking task for
mobile robots.

5 CONCLUSION
In this paper, a target tracking approach based on the improved
SFM is proposed to achieve the harmonious coexistence and col-
laboration between the robot and pedestrians. Compared with the
traditional SFM, the parameters of the improved SFM are learned
through the IRL algorithm, which significantly improve the adapt-
ability and flexibility of the SFM-based tracking. An effective crite-
rion is designed to evaluate the target tracking performance. The
experimental results show the efficiency and robustness of the
proposed method.
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