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IT-HYFAO-VO: Interpretation Tree-Based VO With
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Abstract— For the visual odometry (VO) and simultaneous
localization and mapping (SLAM) in indoor environments, high-
level geometric features have attracted more and more atten-
tion in recent years. Unlike the generally used point features,
the geometric features, such as planes and lines, encode more
higher-level semantic information of the scene which is beneficial
for various tasks of mobile robots. In this article, an RGB-D
VO system with hybrid high-level geometric features is developed.
An interpretation tree (IT)-based hybrid feature association
framework is proposed, which turns the feature association into a
multiple-hypothesis decision problem. The IT expansion method
is elaborately designed. Specifically, an internode consistency is
proposed for generation of hypotheses and a consistent transfor-
mation model (CTM) for each hypothesis is explicitly expressed
and incrementally updated. When the IT is constructed, a closed-
form solution to the feature association and the camera transfor-
mation can be obtained. Then, a hybrid feature joint optimization
method is introduced to further refine the pose estimate and
parameters of geometric features. During optimization, the planes
and lines are appropriately parameterized and the uncertainties
arising from feature extraction are derived and used to balance
the contributions of two types of features in the cost function.
Extensive experiments are executed on public datasets and the
results demonstrate that the proposed method can achieve higher
accuracy and stronger robustness.

Index Terms— High-level geometric features, joint multifeature
association, RGB-D visual odometry (VO).

I. INTRODUCTION

V ISUAL odometry (VO) and simultaneous localization
and mapping (SLAM) are important tasks in robot-

ics [1]–[3]. In VO and SLAM systems, point features have
been widely used and remarkable performance is achieved
[4]–[6]. However, in low-textured environments, point features
are scarce or not well-distributed in the image, and in this
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case, point features are ineffective to localize the camera and
represent the structure of the environment [7]–[9]. In recent
years, high-level geometric features have been exploited in
VO and SLAM [10]. They can be combined with point features
to gain robustness to low-textured environments as well as
varying illumination conditions [7], [11]. Man-made environ-
ments are often dominated by objects from which the high-
level geometric features, such as planes and lines, are easy
to be extracted [7], [12], [13]. Compared with point features,
geometric features are less numerous [14] and less sensitive to
illumination changes and position ambiguity [13]. Moreover,
the geometric feature-based map is more semantically mean-
ingful compared with the point feature-based map, such as
the Manhattan planes and edges in a man-made environment,
which convey the high-level semantic information about the
general geometric structure of the scene and are beneficial to
high-level tasks of robots [15]–[17].

Two issues are raised in VO using high-level geometric
features in 3-D space: establishing feature correspondences
across successive frames, and properly parameterizing the fea-
tures in the optimization. The existing methods for association
of geometric features (planes and lines) in 3-D space can
be classified into two categories, i.e., nearest neighbor (NN)
search-based methods [8], [16], [18] and RANSAC-based
methods [12], [14], [19].

For the NN search-based association, the best match for
each feature is selected via an NN search using a predefined
distance measure. The distance measure for plane features is
often defined by geometric constraints (e.g., angles between
plane normals and difference of distances from the origin to
the planes) and the projection overlapping between planes [8],
[16], [20]. For line features, the NN search-based association
is mostly accomplished using the similarity between the visual
descriptors extracted from the image. The line band descriptor
(LBD) [21] is the most commonly used one in VO and
SLAM systems [7], [13]. The NN search-based methods can
also be used for the association of multiple features. For
instance, plane and line features were used together in [11]
and they were associated using the NN search based on
the aforementioned distance measures. Nevertheless, the two
different features were treated separately in the association
and the geometric constraints between them were not consid-
ered. As a result, it may occur that the associated geometric
features cannot be aligned by a common transformation of
the camera because of incorrect correspondences. During the
pose estimation, the associated features are usually jointly
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TABLE I

COMPARISON BETWEEN DIFFERENT ASSOCIATION FRAMEWORKS FOR
GEOMETRIC FEATURES IN 3-D SPACE

optimized. Thus, if correctly associated pairs are not sufficient
to dominate the optimization, a fatal error may occur which
might cause a disastrous breakdown of the whole system.

For the RANSAC-based association, a transformation model
is computed using a set of randomly sampled correspondences
and this process is iterated until sufficient inliers are obtained.
In [12] and [14], plane and point features were associated
via a RANSAC framework in case that plane features were
insufficient for pose estimation. In [19], RANSAC was applied
to associate the lines extracted from images and estimate
the camera poses, which were further refined by nonlinear
optimization. For the RANSAC-based methods, the associ-
ated features are ensured to be consistent under a common
transformation model and can be used in the subsequent opti-
mization. Nevertheless, the RANSAC-based association has
three major disadvantages. First, the RANSAC is an iterative
process, of which the runtime and convergence are sensitive
to thresholds and the ratio of inliers. Second, in each iteration,
the feature pairs used to determine the transformation model
are randomly sampled. Thus, the possibility remains that the
final consensus set is compatible with an incorrect model
[22], [23]. Third, the hypothesized transformation model for
each iteration is recomputed using newly sampled pairs and the
constraints provided in the previous iterations are discarded,
causing the waste of computing resources and slow conver-
gence speed.

To fully address the aforementioned issues, a novel frame-
work is proposed in this article for the association of mul-
tiple high-level geometric features and the comparison with
the existing frameworks is shown in Table I. Compared
with the NN search-based methods, both the RANSAC-based
framework and the proposed framework guarantee that the
associated features are consistent under a common transfor-
mation of the camera. Compared with the RANSAC-based
framework, all the possible hypotheses are properly structured
in our framework and an optimal solution can be determined
in a closed form. Furthermore, instead of recomputing the
transformation model using the randomly sampled feature
correspondences, the transformation model corresponding to
each hypothesis is incrementally updated in our framework.

The association framework proposed in this article is based
on the interpretation tree (IT). An IT structure is spanned by
all possible solutions to the data association problem [24].

The feature correspondences can be found by a constraint-
based search in the IT. In [25] and [26], the IT was used
to associate the line segments in 2-D space. The constraints
applied for the tree search were based on the relation table,
which was proposed as a representation of geometric patterns
of line segments. In [27], the location-independent constraints
were applied and the location of the robot was estimated for
each hypothesis once the location can be fully constrained.
Then, the location-dependent constraints were applied to fur-
ther reduce the search space of the IT. Another important
application of ITs in data association is the joint compatibility
branch and bound (JCBB) algorithm proposed in [28], which
traverses the IT in search for the hypothesis with the largest
number of jointly compatible feature pairings. The JCBB
algorithm has been adopted by 2-D SLAM systems performed
in an EKF framework [29]–[32]. However, the IT structure
has never been used in the joint association of multiple
geometric features in 3-D space. Furthermore, though all the
hypotheses can be traversed in the aforementioned IT-based
association methods, they cannot provide an explicit relation
of the constrained subspace of robot poses to the spatial
configuration of features, which is significantly beneficial to
the active observation and navigation of a robot. In contrast,
in our framework, the problems of feature association and pose
estimation are solved simultaneously in an incremental man-
ner, and the constrained subspace of robot poses corresponding
to each associated pair is explicitly represented.

The parameterization is another fundamental problem in
the VO and SLAM systems using geometric features. In
general, unlike point features, no dominant method is avail-
able for parameterization of high-level geometric features
in 3-D space. The homogeneous coordinates were utilized to
parameterize the plane in 3-D space [12], [23]. The Hessian
normal form uses the unit normal and vertical distance from
the origin to the plane to represent the plane [33], [34]. The
closest point (CP) from the plane to the origin was used
in [11], [35], and [36]. The unit quaternion parameterization
with a minimal representation was employed in a factor-
graph formulation of SLAM problems [37]. The minimal
representation was used to update plane parameters during
the factor-graph optimization. In this way, the parameters of
planes can be estimated in the general graph-based SLAM
systems [16], [20]. As for line features, the coordinates of
end-points were usually adopted to represent a line [7], [10],
[11], [38]. The Plücker coordinates [23] were also widely used
for the geometrically simple representation of line transfor-
mations in 3-D space [33], [39], [40]. However, the Plücker
coordinates are overparameterized which are inappropriate for
the optimization of line parameters. Therefore, in the works
of [13] and [41], an orthonormal representation proposed
in [42] was used in the optimization process. The orthonormal
representation is a minimal and decoupled representation and
the conversion between the orthonormal representation and the
Plücker coordinates is quite simple.

In this article, we develop an IT-based VO system with asso-
ciation and optimization of hybrid features (IT-HYFAO-VO).
A novel framework is proposed based on the IT structure to
associate multiple types of geometric features simultaneously.
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All the possible pairs of features are organized in an IT struc-
ture, with each node representing a possible correspondence of
features and an interpretation being a path from the root node
to a leaf node, i.e., a set of feature correspondences. During
the generation of interpretations, an internode consistency
is defined between two nodes such that the feature corre-
spondences represented by these two nodes can be aligned
by common transformations of the camera. For any existing
interpretation in the IT, any two nodes in the interpretation
satisfy the inter-node consistency and the transformations that
align the two nodes are explicitly expressed. Then, a consistent
transformation model (CTM) is proposed for an interpretation,
which consists of the transformations that can align the associ-
ated features represented by all the nodes in the interpretation.
The CTM is incrementally updated as more nodes are added to
the interpretation. After the association of geometric features
and the calculation of the camera pose transformation, a hybrid
feature joint optimization is introduced to further refine the
camera pose and the parameters of the geometric landmarks.
The original contributions of this article are summarized as
follows.

1) An IT-based framework is proposed for the association
of hybrid geometric features, which structures all the
possible hypotheses with an IT and the optimal solu-
tion can be determined in a closed form. To the best
of our knowledge, this is the first feature association
algorithm to combine two types of different geometric
features (planes and lines) in 3-D space into one uni-
fied framework. In addition, the proposed framework is
theoretically extensible to other types of parameterized
geometric features.

2) An incremental IT construction algorithm based on the
internode consistency computation and CTM update
is proposed. Specifically, through the computation of
the internode consistency, the interpretations in the
IT are generated. With the increase of each inter-
pretation, the CTM is incrementally updated along
with the construction of the IT, which can gradu-
ally constrain the feature association and pose esti-
mation. After the construction of the IT structure,
the closed-form solutions to the feature association as
well as the camera pose estimation can be obtained
simultaneously.

3) A scheme of hybrid feature joint optimization is pro-
posed to refine the camera pose estimate as well as
the parameters of the plane and line features, given
the results of feature association and the initial estimate
of the camera pose. The uncertainties arising from the
extraction of the two types of features are computed to
well balance the two different components in the joint
optimization process. As a result, an accurate and robust
VO system can be achieved.

The rest of this article is organized as follows. The system
overview is presented in Section II. The IT-based hybrid
geometric feature association is proposed in Section III. The
hybrid feature optimization is presented in Section IV. Exten-
sive experimental evaluations are presented in Section V.
Conclusions are drawn in Section VI.

Fig. 1. System overview.

II. SYSTEM OVERVIEW

The architecture overview of the IT-HYFAO-VO is shown
in Fig. 1, which consists of three main components, i.e., feature
extraction, IT-based hybrid feature association, and hybrid
feature joint optimization.

The feature extraction module outputs the geometric fea-
tures (planes and lines) extracted from RGB-D images.
It should be noted that any plane/line extraction method can be
used here as long as the 3-D planes/lines can be extracted in
the camera coordinate system. In the implementation, the plane
features are extracted from the depth image captured by an
RGB-D camera, with the plane segmentation method [43]
implemented in the Point Cloud Library (PCL). For the line
feature extraction, the 2-D lines in the image are extracted
from the RGB image by the LSD algorithm proposed in [44],
which are projected into the 3-D space using the depth infor-
mation to yield the 3-D line features. The plane and line
features extracted from successive frames are fed into the
IT-based hybrid feature association module and the hybrid
feature joint optimization module, respectively. In the feature
association module, the hypotheses about possible associations
are organized in an IT structure. The interpretations in the IT
are generated through the computation of the internode con-
sistency to guarantee that any two nodes in an interpretation
can be aligned by common transformations of the camera.
For each generated interpretation, the CTM is incrementally
updated. After construction of the IT, the resultant CTMs give
all the associated feature pairs in an interpretation and the
corresponding camera transformation, which are fed into the
hybrid feature joint optimization module. In the hybrid feature
joint optimization module, the plane and line features are
properly parameterized for the nonlinear optimization and their
uncertainties are estimated to well balance their contributions
in the joint cost function. A more accurate camera pose
estimate as well as a map composed of geometric landmarks
are obtained through the joint optimization process.

III. IT-BASED HYBRID FEATURE ASSOCIATION

The IT-based hybrid feature association plays a central role
in the IT-HYFAO-VO, which outputs feature correspondences
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Fig. 2. First two levels of a full IT structure.

and the estimated camera pose simultaneously. The hypotheses
about possible associations of multiple geometric features
are organized in an IT structure and the inherent geometric
properties of features are fully exploited. We design a novel
algorithm for the incremental construction of the tree. A new
node is added to an interpretation if the internode consistency
is satisfied, which is computed in Section III-A. For each
interpretation, a CTM is incrementally updated to make sure
that there exists a common transformation that aligns all the
feature pairs. The CTM is introduced in Section III-B.

For the sake of clarity, we first define the notations used in
this section. A geometric feature is represented by F ∈ {π,L}
which can be either a plane feature π or a line feature L.
π = [nT , d]T is the plane feature extracted from an RGB-D
scan with n ∈ S2 being the unit normal vector and d ∈ R

the vertical distance from the origin to the plane. And L =
[uT , vT ]T is the line feature, where u ∈ R3 is a vector with
its direction orthogonal to the plane defined by the join of the
line and the origin, and its norm equal to the vertical distance
from the origin to the line, and v ∈ S2 is the unit direction
vector of the line. The coordinate system in which the feature
F is described as denoted by the subscript. In this section,
we suppose that the IT is constructed for a frame-to-frame
registration and the current and reference frames are denoted
by the subscripts c and r , respectively.

The IT (Fig. 2) is a data structure that can be used to match
features or geometrical primitives in two different coordinate
systems. Each node N = (Fc,Fr ) in the IT represents a
correspondence between a feature Fc from the current frame
and a feature Fr from the reference frame. An n-interpretation
Pn = {N n,N n−1, . . . ,N 1} is a path from the root node to a
node at the nth level of the IT, which is a set of n pairings of
features from two frames. Note that, N j , j = 1, . . . , n can be
any node at the j th level. Because the nodes are handled within
an interpretation through this section, we omit the indices
that label different nodes at the same level for brevity. The
constructed IT has Nr levels in total, where Nr is the number
of features in the reference frame. All possible pairings of the
j th ( j = 1, . . . , Nr ) feature in the reference frame with the
features in the current frame are at the j th level of the tree.
The branching factor at each node is Nc which is the number
of features in the current frame, i.e., each node can have Nc

descendants at most. Fig. 2 shows the first two levels of a full
IT structure, which contains all the possible associations of the
features observed in two different camera frames. It is clear
that the full IT is highly redundant [45] and includes plenty
of incorrect associations.

A. Internode Consistency

The internode consistency is proposed as a judgment to
determine whether a new node N n+1, n = 1, . . . , Nr − 1
can be added to an existing interpretation Pn in the IT.
That is to say, if the internode consistency between N n+1

and any node N i , i = 1, . . . , n in Pn is satisfied, the node
N n+1 will be added to Pn yielding Pn+1. The internode
consistency guarantees that for any two nodes that are in the
same interpretation in the IT, the corresponding two pairs
of features can be aligned by common transformations of
the camera. Together with the CTM presented in the next
subsection, the association of features and the localization of
the camera can be achieved directly after the IT is constructed.

Definition 1 (Internode Consistency): Given two nodes in
an interpretation N i = (F i

c,F i
r ) and N j = (F j

c ,F j
r ),

if there exist (unique or multiple) rigid transformations
R ∈ SO(3), t ∈ R3 in 3-D space such that

F i
c = T

(
F i

r , R, t
)

F j
c = T

(
F j

r , R, t
)

(1)

T (π, R, t) =
[

R 03×1

−tT R 1

][
n
d

]

T (L, R, t) =
[

R [t]× R

03×3 R

][
u
v

]
(2)

where T (F , R, t) denotes a 3-D transformation of feature F
via R, t defined in (2) and [t]× represents the skew-symmetric
matrix corresponding to the vector t, then N i and N j are
internode consistent under R, t .

As seen from Definition 1, given two nodes in an interpreta-
tion, we need to solve (1). If the solution set S = {R, t|F i

c =
T (F i

r , R, t),F j
c = T (F j

r , R, t), R ∈ SO(3), t ∈ R3} is not
empty, the nodes N i and N j are internode consistent accord-
ing to the definition. Because the solution to t does not affect
the value of R, the internode consistency can be decoupled
into rotation consistency and translation consistency. To this
end, we first solve for the rotation consistency and then the
translation consistency.

1) Rotation Consistency: For geometric features, the rigid
rotation in 3-D space can be formulated as ec = Rer , with e
being the unit direction vector of the feature F . Specifically,
e = n when F = π and e = v when F = L. Known from (1)
and (2), given two nodes N i and N j , we need to solve for
the rotation R ∈ SO(3) that satisfies

ei
c = Rei

r , e j
c = Re j

r . (3)

According to the spatial configuration of the directions of
features, the solution to (3) can be classified into four cases,
which are presented in detail in Appendix A. Algorithm 1
gives the results of the rotation consistency and outputs the
set of consistent rotations R. Among the four cases, the 3DoF
rotation can be fully constrained in three cases, except Case I,
which corresponds to a special configuration of the directions
of features. In the following, the translation consistency is
calculated given the results of the rotation consistency.

2) Translation Consistency: Given two nodes N i , N j in an
interpretation and the set of consistent rotations R, we need
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Algorithm 1 Rotation Consistency

Input: {ei
c, ei

r , e j
c , e j

r } – four directions of features from two
nodes N i ,N j .

Output: R = {R|ei
c = Rei

r , e j
c = Re j

r , R ∈ SO(3)}.
1: function ROTATIONCONSISTENCY(ei

c, ei
r , e j

c , e j
r )

2: if 〈ei
c, e j

c 〉 �= 〈ei
r , e j

r 〉 then
3: R = Ø.
4: else if ei

c = e j
c and ei

r = e j
r then

5: (Case I)
6: R = {R|R = R(ϕ), ϕ ∈ R}.
7: else if ei

c = ei
r and e j

c = e j
r then

8: (Case II)
9: R = {I}.

10: else if ei
c = ei

r then
11: (Case II)
12: R = {Rot

(
ei

c,�(ei
c, e j

c , e j
r )
)
}.

13: else if e j
c = e j

r then
14: (Case II)
15: R = {Rot

(
e j

c ,�(e j
c , ei

c, ei
r )
)
}.

16: else if (ei
c − ei

r ) × (e j
c − e j

r ) = 0 then
17: (Case III)
18: r = r i

x cos γi + r i
y sin γi ,

19: θ = 1
2

(
�(r, ei

c, ei
r ) + �(r, e j

c , e j
r )
)

.
20: R = {Rot(r, θ)}.
21: else
22: (Case IV)
23: r = η(ei

c − ei
r ) × (e j

c − e j
r ),

24: Compute θi = �(r, ei
c, ei

r ) and θ j = �(r, e j
c , e j

r ).
25: if θi = θ j then
26: R = {Rot

(
r, 1

2 (θi + θ j)
)}.

27: else
28: R = Ø.
29: end if
30: end if
31: return R.
32: end function

to solve for the set of consistent translations T such that
∀R ∈ R and ∀t ∈ T , N i and N j are internode con-
sistent under R, t. Unlike the computation of the rotation
consistency, different geometric features need to be handled
separately when computing the translation consistency. In
this article, plane and line features are adopted and three
different combinations need to be considered, i.e., plane-plane
case, line-line case, and plane-line case, which are detailed
in Appendix B. And the results of the translation consistency
are given in Algorithm 2, which outputs the final solution set
S = R ∪ T .

Until now, both the consistent rotation and translation of
the internode consistency are solved. For all R ∈ R and
t ∈ T , (1) is satisfied, i.e., the nodes N i and N j are internode
consistent under R, t . The complete algorithmic procedure
of the internode consistency is presented in Algorithm 3,
which requires two nodes N i and N j in the IT as inputs and
then outputs a set of consistent transformations S. As can be

Algorithm 2 Translation Consistency

Input: Two nodes in an interpretation N i = (F i
c,F i

r ), N j =
(F j

c ,F j
r ) and the set of consistent rotations R.

Output: S = T ∪ R′ = {t, R′|F i
c = T (F i

r , R′, t),F j
c =

T (F j
r , R′, t), R′ ∈ SO(3), t ∈ R3}.

1: function TRANSLATIONCONSISTENCY({N i ,N j },R)
2: R′ = R.
3: if F i

c = π i
c,F i

r = π i
r ,F

j
c = π

j
c ,F j

r = π
j

r then
4: (Plane-Plane case)
5: if ni

c = n j
c then

6: if di
r − di

c = d j
r − d j

c then
7: T = {t|t = t pp1 + [wpp1]×μ,μ ∈ R3}.
8: else
9: T = Ø.

10: end if
11: else if ni

c �= n j
c then

12: T = {t|t = t pp2 + μw pp2, μ ∈ R}.
13: end if
14: else if F i

c = Li
c,F i

r = Li
r ,F

j
c = L j

c ,F j
r = L j

r then
15: (Line-Line case)
16: if vi

c = v
j
c then

17: Let ec = ui
c−u j

c

‖ui
c−u j

c ‖ , er = ui
r −u j

r

‖ui
r −u j

r ‖ .

18: R′ = ROTATIONCONSISTENCY(vc, vr , ec, er ).
19: if ‖ui

r − u j
r ‖ = ‖ui

c − u j
c‖ && R′ �= Ø then

20: T = {t|t = t ll1 + μwll1, μ ∈ R}.
21: else
22: T = Ø.
23: end if
24: else if vi

c �= v
j
c then

25: if l(Li
r ,L

j
r ) − l(Li

c,L
j
c ) = 0 then

26: T = {(AT
ll All)

−1 AT
ll bll }.

27: else
28: T = Ø.
29: end if
30: end if
31: else if F i

c = π i
c,F i

r = π i
r ,F

j
c = L j

c ,F j
r = L j

r then
32: (Plane-Line case)
33: if ni

c
T
v

j
c = 0 then

34: if l(π i
r ,L

j
r ) − l(π i

c,L
j
c ) = 0 then

35: T = {t|t = t pl1 + μw pl1, μ ∈ R}.
36: else
37: T = Ø.
38: end if
39: else if ni

c = v
j
c then

40: T = {t|t = t pl2 + Rw pl2, R ∈ R}.
41: else
42: T = {(AT

pl Apl)
−1 AT

pl bpl}.
43: end if
44: end if
45: return S = T ∪ R′.
46: end function

concluded from Sections III-A1 and III-A2, according to the
spatial configurations of plane and line features in 3-D space,
the output S of Algorithm 3 takes one of the following four
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TABLE II

SPATIAL CONFIGURATIONS OF FEATURES CORRESPONDING TO
DIFFERENT FORMS OF THE TRANSFORMATION SET

forms (rDoF and tDoF are abbreviations for rotational and
translational DoFs, respectively).

1) 1 rDoF and 2 tDoFs: S = {R, t|R = R(ϕ), ϕ ∈ R, t =
t0 + [w]×μ,μ ∈ R3}.

2) 1 rDoF: S = {R, t|R = R(ϕ), t = t0 + Rw, ϕ ∈ R}.
3) 1 tDoF: S = {R, t|R = Rot(r, θ), t = t0+μw, μ ∈ R}.
4) Constrained: S = {R, t|R = Rot(r, θ), t = t0}.

The spatial configurations of geometric features corresponding
to the four forms are listed in Table II. For the general
configurations of both the line-line case (vi

c �= v
j
c ) and plane-

line case (ni
c �= v

j
c , ni

c
T
v

j
c �= 0), the transformation can be

fully constrained by two nodes. As for the unconstrained
cases, there are infinite solutions to the transformation and
the explicit expression is given in Algorithm 3.

Algorithm 3 Internode Consistency

Input: Two nodes N i = (F i
c,F i

r ), N j = (F j
c ,F j

r ).
Output: S = {R, t|F i

c = T (F i
r , R, t),F j

c = T (F j
r , R, t)}

1: function INTERNODECONSISTENCY({N i ,N j })
2: if F i

c = π i
c,F i

r = π i
r ,F

j
c = π

j
c ,F j

r = π
j

r then
3: ei

c = ni
c, ei

r = ni
r , e j

c = n j
c , e j

r = n j
r .

4: else if F i
c = Li

c,F i
r = Li

r ,F
j

c = L j
c ,F j

r = L j
r then

5: ei
c = vi

c, ei
r = vi

r , e j
c = v

j
c , e j

r = v
j
r .

6: else if F i
c = π i

c,F i
r = π i

r ,F
j

c = L j
c ,F j

r = L j
r then

7: ei
c = ni

c, ei
r = ni

r , e j
c = v

j
c , e j

r = v
j
r .

8: end if
9: R =ROTATIONCONSISTENCY(ei

c, ei
r , e j

c , e j
r ).

10: S =TRANSLATIONCONSISTENCY({N i ,N j },R).
11: return S.
12: end function

In the process of tree expansion, for a new node N n+1

generated by a hypothesized association of geometric features
and an existing interpretation Pn in the IT, we compute the
internode consistency between N n+1 and each node in Pn

by S(n+1)i = INTERNODECONSISTENCY({N n+1,N i }),∀i ∈
{1, . . . , n}. If S(n+1)i �= Ø,∀i ∈ {1, . . . , n}, the new
node N n+1 is added to Pn , which results in an (n + 1)-
interpretation Pn+1 = {N n+1} ∪ Pn. After Pn+1 is generated,
for any two nodes N i and N j (∀i, j ∈ {1, . . . , n + 1})
in Pn+1, the two feature pairs corresponding to N i and
N j , respectively, can be aligned by any R, t ∈ Si j =
INTERNODECONSISTENCY({N i ,N j }). However, ∀i, j, k,

l ∈ {1, . . . , n + 1}(i �= j �= k �= l), Si j and Skl are possibly
not equivalent to each other (see Fig. 3 as an example).
Therefore, computation of the internode consistency cannot
give the final transformations that align the associated features
corresponding to all the nodes in the interpretation. Therefore,
when an interpretation is updated by adding a new node,
we need to fuse the outputs of the internode consistency of
any two nodes in the interpretation and solve for the feasible
transformations corresponding to the whole interpretation. To
this end, the CTM for an interpretation is defined and updated
in Section III-B.

Algorithm 4 CTM Update
Input: The CTM M(Pn,Sn) for the n-interpretation Pn and

a newly added node N n+1.
Output: The updated CTM M(Pn+1,Sn+1) for the (n + 1)-

interpretation Pn+1.
1: function UPDATE(M(Pn,Sn),N n+1)
2: Pn+1 = {N n+1} ∪ Pn.
3: S = Sn .
4: for i = 1 to n do
5: S(n+1)i =INTERNODECONSISTENCY({N n+1,N i }).
6: if S(n+1)i = Ø then
7: S = Ø and break.
8: else
9: S =FUSE(S,S(n+1)i ).

10: end if
11: end for
12: Sn+1 = S.
13: return M(Pn+1,Sn+1).
14: end function

B. CTM

The CTM is defined for each interpretation in the IT,
which consists of the consistent transformations that align
the associated features represented by all the nodes in the
interpretation. The CTM is updated when a new node is
added to an interpretation, fusing the outputs of the internode
consistency. During expansion of the IT, as more nodes are
added to an interpretation, more constraints are available for
estimation of the camera pose, that is to say, the set of
consistent transformations is getting smaller. Fig. 3 gives a
very simple example to illustrate this process.

Definition 2 (CTM): For an n-interpretation Pn =
{N n,N n−1, . . . ,N 1}, a CTM is defined by M(Pn,Sn), with
Sn = {R, t|F i

c = T (F i
r , R, t),∀i = 1, . . . , n}. If Sn �= Ø,

∀R, t ∈ Sn , the n-interpretation Pn is consistent under R, t .
The CTM for each interpretation is maintained during

IT expansion and the specific procedure of CTM update is
given in Algorithm 4. When a new node N n+1 is added to
Pn yielding Pn+1, the updated CTM M(Pn+1,Sn+1) can be
computed by M(Pn+1,Sn+1) = UPDATE

(
M(Pn,Sn),N n+1

)
.

Specifically, Pn+1 is simply the union of Pn and {N n+1},
as in line 2 of Algorithm 4. And Sn+1 is updated by the
function FUSE, which solves the intersection of Sn and
S(n+1)i ,∀i ∈ {1, . . . , n}, as in lines 4–11. The detailed
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Fig. 3. (Simple example.) (a) For nodes N 1 = (F1
c ,F1

r ) and N 2 = (F2
c ,F2

r ), the result of internode consistency is S21 = {R, t|R = Rot(r, ϕ), ϕ ∈ R, t =
t0 +[r]×μ,μ ∈ R

3}, with r = [0, 0, 1]T and t0 = [0, 0,−1]T . Note that the 1DoF rotation around r and the 2DoF translation on the plane vertical to r cannot
be constrained by the two pairs of features. The CTM for the 2-interpretation P2 = {N 2,N 1} is M(P2,S2), with S2 = S21. (b) For nodes N 3 = (F3

c ,F3
r )

and N 2, the result of internode consistency is S32 = {R, t|R = I, t = t0 + μw0, μ ∈ R}, with w = [0, 1, 0]T . For nodes N 3 and N 1, S31 = S32. The CTM
for the 3-interpretation P2 = {N 3,P2} is M(P3,S3), with S3 = {R, t|R = I , t = t0 + μw0, μ ∈ R} (determination of S3 is detailed in Algorithm 4). Note
that the unconstrained 1DoF rotation and one of the two DoFs of the translation in (a) are constrained by adding a new node N 3. The 1DoF translation along
w still cannot be constrained. (c) For nodes N 4 = (F4

c ,F4
r ) and N 3, the result of internode consistency is S43 = {R, t|R = I, t = t0}. For nodes N 4 and

N 2, S42 = {R, t|R = Rot(r, ϕ), t = t1 + Rw1, ϕ ∈ R}, with t1 = [1, 0, −1]T and w1 = [−1, 0, 0]T . For nodes N 4 and N 1, S41 is the same as S42. The
CTM for the 4-interpretation P4 = {N 4,P3} is M(P4,S4), with S4 = {R, t|R = I , t = t0}. It is obvious that until here the transformation between the
two frames is completely constrained by the four associated features.

procedure of the function FUSE in line 9 is given in the
Supplementary Material. The consistent transformation set for
an interpretation takes one of the four forms as is listed
in Table II. For each form, the function FUSE directly outputs
the intersection of two transformation sets, as detailed in the
Supplementary Material.

After the CTM update in Algorithm 4, the newly added
node N n+1 is consistent with all the nodes in Pn under
R, t ∈ Sn+1. Only if the resultant Sn+1 �= Ø, Pn+1 is accepted
as an interpretation in the IT and is continually updated in
the subsequent expansion of the tree. Otherwise, if Sn+1 = Ø,
Pn+1 is pruned from the tree. When the nodes in an interpre-
tation are insufficient to constrain the transformation, there are
infinite solutions to the CTM. With the incremental update of
the CTM, more constraints are added to the unconstrained
estimate until a unique solution is obtained (see Fig. 3 as
an intuitive example). It is worth pointing out that in most
circumstances, very few nodes are sufficient to fully constrain
the transformation estimate (e.g., for some configurations, only
two nodes are sufficient, as in Table II) and the constrained
estimate can be further confirmed by more nodes during
update of the CTM. Thus, the robustness of the algorithm
against outliers and noises can be largely increased. Compared
with the traditional pruning strategy for the IT structure
[25]–[27], the proposed method solves the problems of feature
association and robot localization simultaneously through the
calculation of internode consistency. The constrained subspace
of robot poses is computed and explicitly represented by
the incremental update of CTM. Furthermore, the spatial
configuration of geometric features can also be represented,
which is beneficial to the active navigation in the environment.
After the IT is constructed, the interpretation with the greatest
number of nodes is chosen as the final result of the feature
association. In the implementation, a null node is added to
each node as a wild card, in case that there exist features in
the current frame that do not have any correspondences in the
reference frame.

To the best of our knowledge, this is the first feature asso-
ciation method that combines two different geometric features
into one unified framework. Theoretically, the framework is
readily extensible to any combination of different types of
geometric features that are properly parameterized. Compared

with the systems using only one type of feature, the hybrid
feature framework exploits the advantages of different fea-
tures. For instance, plane features are more stable than line
features. However, when estimating camera poses using plane
features, degeneracy often occurs due to insufficient quantity
of planes extracted from an RGB-D image. In comparison,
the quantity of the extracted line features is usually much
greater, and thus can provide sufficient constraints for the pose
estimation in most situations. Theoretically, two nonparallel
lines are enough to constrain the pose estimation, as can be
seen in Table II. In our method, the complementary advantages
of planes and lines are fully exploited and improvement of
the performance is proven by the experiments. Furthermore,
unlike other multifeature methods using NN search-based
association [7], [11], [13] or RANSAC-based association
[12], [14], the associated features in our method are ensured
to be consistent under a common transformation model which
is incrementally updated in a closed form. Thus, the resultant
feature pairs and camera pose estimate can be applied in the
subsequent optimization process without any inconsistency,
and the realtime performance can also be guaranteed.

IV. HYBRID FEATURE JOINT OPTIMIZATION

In Section III, we have performed the geometric feature
matching between the current and reference frames. The asso-
ciated planes and lines are denoted by {πci , πri }i=1,...,Nπ

and
{Lcj ,Lr j } j=1,...,NL , respectively. In the meantime, an estimate
of the transformation R, t of the RGB-D camera is obtained.
Nevertheless, the planes and lines are fitted directly by the
noisy measurements. Uncertainties from feature extraction
are involved in the camera pose estimation. In this section,
the transformation of the camera as well as the geometric
landmarks in the map are further refined by a hybrid feature
joint optimization process.

The overall cost function of the optimization is

F(R, t, π̃ri , L̃r j ) =
Nπ∑
i=1

∥∥hπ

(
R, t, π̃ri

)− πci

∥∥2
Cπci

+
NL∑
j=1

∥∥hL
(
R, t, L̃r j

)− Lcj

∥∥2

CLcj
(4)
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where π̃r and L̃r represent the plane and line landmarks in
the map, respectively, described in the reference frame. And
hπ (R, t, π̃ri ) and hL(R, t, L̃r j ) are the measurement models
corresponding to the planes and lines, respectively, which
are given in Sections IV-A and IV-B. Note that both the
plane and line features are overparameterized in Section III.
In 3-D space, a plane has three DoFs and a line has four
DoFs, but they are parameterized by a 4-vector and 6-vector,
respectively. To this end, in Sections IV-A and IV-B, minimal
representations are used to update the plane and line parame-
ters in optimization, respectively. In addition, the covariance
matrices Cπci and CLcj of planes and lines, respectively, are
computed in Section IV-C. They are used not only to decrease
the effect of uncertainties, but also to balance the contributions
of two types of features represented in different parameter
spaces.

A. Parameterization of Planes

In Section III, a plane extracted from the RGB-D images
is parameterized by π = [nT , d]T with nT n = 1. If a point
p ∈ R3 in 3-D space is on the plane π , it satisfies nT p+d = 0.
Note that the equation cannot be affected by multiplication by
a non-zero scalar. Thus, a plane in 3-D space has only three
DoFs. The homogeneous representation of the plane is denoted
by � ∈ P3 in projective space [23]. Spherically normalizing
the homogeneous vector � yields π̃ = �/‖�‖ ∈ S

3, where S
3

is the 3-sphere in the space R4, which is a Lie group under the
operation of quaternion multiplication. During optimization,
the exponential map from R3 to S3 [46] is used to update a
plane π̃ ∈ S3 by an increment ζ ∈ R3 using the quaternion
multiplication π̃ ′ = exp(ζ ) ◦ π̃ . The measurement model is

hπ

(
R, t, π̃r

) =
[

R 03×1

−tT R 1

]
· π̃r

‖ñr‖ (5)

where π̃r = [ñT
r , d̃r ]T is the plane to be updated, which is

described in the reference coordinate system, and (R, t) ∈
SE(3) is the rigid body transformation from the reference
coordinate system to the current one.

B. Parameterization of Lines

For the parameterization of lines, we use two forms of line
representations as in [41], i.e., the Plücker coordinates for a
global parameterization of line features and the orthonormal
representation for the local update during optimization. The
Plücker coordinates are denoted by L̃ = [ũT , ṽT ]T ∈ P

5

satisfying the Plücker constraint ũT ṽ = 0. ũ ∈ R3 is normal
to the plane defined by the join of the line and the origin,
and ṽ ∈ R3 is the line direction. And the orthonormal
representation [42] is denoted by ( Q, W) ∈ SO(3) × SO(2).
The orthonormal representation ( Q, W) of a 3-D line L̃ can
be computed using a QR decomposition [ũ|ṽ] = Q�, � =
diag(σ1, σ2). The matrix W is set to

W =
[
σ1 −σ2

σ2 σ1

]
∈ SO(2). (6)

The minimum four parameters for a line are denoted by
ρ = [φT , φ]T , φ ∈ R3, φ ∈ R. ( Q, W) is updated by

Q = Q exp([φ]×) and W = W exp([φ]×), where [φ]× and
[φ]× are the 3 × 3 and 2 × 2 skew symmetric matrices
corresponding to φ and φ, respectively. And ( Q, W) can be
converted to the Plücker coordinates L̃ by L̃ = [σ1qT

1 , σ2qT
2 ]T ,

where qi is the i th column of Q.
The measurement model of the line is represented by

hL
(

R, t, L̃r
) =

[
R [t]× R

0 R

]
· L̃r

ṽr
(7)

where L̃r = [ũT
r , ṽT

r ]T is the line to be updated, which is
described in the reference coordinate system.

C. Computation of Covariances

The extracted plane π = [nT , d]T is computed by minimiz-
ing the sum of squared distances from observed data points
pπ on the plane to the fitted plane model

Eπ (n, d) = 1

2

Npπ∑
i=1

(
nT pπ i + d

)2
, s. t. nT n = 1. (8)

Npπ represents the number of points that are supposed to
fit a plane model. By taking the partial derivative of Eπ(n, d)
with respect to d and setting it to zero, the optimal estimate
of d can be computed by

d∗ = −nT pGπ (9)

with pGπ = 1
Npπ

∑Npπ

i=1 pπ i . Substituting (9) into (8) yields

Eπ (n) = 1

2
nT Sπ n (10)

where Sπ = ∑Npπ

i=1 ( pπ i − pGπ )( pπ i − pGπ )T . The optimal
estimate n∗ equals the eigenvector of Sπ corresponding to the
smallest eigenvalue. The pseudoinverse of the covariance of
(n, d) is estimated by the Hessian matrix

C†
π = Hπ |n∗,d∗ =

Npπ∑
i=1

[
pπ i pT

π i pπ i

pT
π i 1

]
. (11)

Likewise, the extracted line L = [uT , vT ]T is computed by
minimizing the sum of squared distances from observed data
points pL on the line to the fitted line model

EL(u, v) = 1

2

NpL∑
i=1

∥∥u − [ pLi ]×v
∥∥2

s. t. vT v = 1, uT v = 0. (12)

NpL represents the number of points that are supposed to
fit a line model. By taking the partial derivative of EL(u, v)
with respect to u and setting it to zero, the optimal estimate
of u can be computed by

u∗ = [ pGL]×v (13)

with [ pGL]× = 1
NpL

∑NpL
i=1 [ pLi ]×. Substituting (13) into (12)

yields

EL(v) = 1

2
vT SLv (14)
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where SL = ∑NpL
i=1 [ pLi − pGL]T×[ pLi − pGL]×. The optimal

estimate v∗ also equals the eigenvector of SL corresponding
to the smallest eigenvalue, and the pseudoinverse of the
covariance of (u, v) is

C†
L = HL|u∗,v∗ =

NpL∑
i=1

[
I3 [ pLi ]T×

[ pLi ]× [ pLi ]T×[ pLi ]×

]
. (15)

V. EXPERIMENTS

In this section, extensive experiments are performed over
the TUM [47] and ICL-NUIM [48] benchmarks. Specifi-
cally, the precise and recall rates of the proposed hybrid
feature association method are evaluated in Section V-A and
the translational and rotational errors of the frame-to-frame
registration are compared in Section V-B. In Section V-D,
the proposed IT-HYFAO-VO is compared with other three
VO methods. In Section V-E, a complete SLAM system
composed of IT-HYFAO-VO and a general factor-graph-based
back-end optimization is compared with eight state-of-the-art
SLAM systems. The test platform for all the experiments is a
computer with an Intel i7 CPU at 1.8 GHz and 8G RAM.

A. Experiments on Feature Association

The proposed IT-based hybrid feature association method
is compared with the matching methods using the visual
descriptor and RANSAC scheme, respectively. We manually
label the corresponding feature pairs in successive frames,
which are used as the groundtruth in the experiment. The
precision rate, recall rate, and the runtime of each method
are evaluated and compared. Precision rate is defined as the
number of associated features that are labeled divided by the
total number of associated features. Recall rate is the number
of associated features that are labeled divided by the total
number of labeled features.

We first compare the IT-based method with the visual
descriptor-based matching method, in which the LBD [21] is
used. The LBD is an effective line descriptor that is widely
employed in VO and SLAM systems [7], [11], [13]. For the
sake of fairness, the IT-based association is run with only
the line features in this experiment. The two methods are
performed over nine image sequences from the TUM dataset.
It can be seen from Fig. 4(a) that both the precision and recall
rates of the IT-based line matching are higher than those of the
LBD-based line matching. The reason is that the LBD is based
on the visual appearance around the 2-D line on the image.
It is largely affected by lighting conditions as well as the
motion blurs, which is a common disadvantage of most visual
features. Moreover, the LBD-based line matching does not
take into account the geometric information of environments,
which presents much higher robustness and stability than point
features. In contrast, the proposed IT-based line matching fully
exploits the high-level geometric features in 3-D spaces, which
are independent of the visual appearance, and thus insensitive
to the location and orientation of the camera. The bottom
figure of Fig. 4(a) shows the runtime of the frame-to-frame
association of the two methods. It can be seen that both
methods are quite time-saving.

Fig. 4. Comparison with (a) LBD-based and (b) RANSAC-based line
matching, respectively, in terms of (top) precision rate, (middle) recall rate
and (bottom) runtime, respectively.

Then, the comparison with the RANSAC-based feature
matching is conducted. The RANSAC algorithm is extensively
used in the association of geometric features [12], [14].
In this experiment, the RANSAC algorithm is implemented
according to the work of [12] and both planes and lines
are used in the matching process. The precision and recall
rates are presented in Fig. 4(b). For the RANSAC-based
feature matching, the iteration proceeds until the association
result with the most consistent inliers is found. Therefore,
the RANSAC-based matching also presents high precision
and recall rates. However, it is much more time-consuming
than the IT-based method, as shown in the bottom figure of
Fig. 4(b). Because the RANSAC algorithm is based on a
random sampling process and it usually takes much time to
converge to a good result. Differently, in the proposed IT-based
method, the incorrect interpretations are naturally discarded
during the tree expansion. A significant characteristic of the
IT-based method is that feature association is accompanied by
expansion of the IT in a closed form and no iterative process
is involved, which makes our method quite time-saving.

In addition, the histogram at the bottom of Fig. 5(a) gives
the number of frames (for nine image sequences used in Fig. 4)
as a function of the quantity of extracted features (planes and
lines) per frame. And at the top of Fig. 5(a), the statistics
of the number of nodes in an IT corresponding to each
bin of the histogram are shown in box plots. As can be
seen in the histogram, the quantity of extracted features per
frame is mainly distributed in the range of 10–30, and the
corresponding quantity of nodes in the IT is fairly small.
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Fig. 5. (a) Bottom: histogram of the quantity of features (planes and lines). Top: statistics of the number of nodes in an IT corresponding to the features
in each bin of the histogram. (b) and (c) (Left) Extracted plane and line features and (right) corresponding constructed IT structures for two scenes from the
image sequences (b) fr3/cabinet and (c) fr2/desk, respectively. The null nodes are colored red in the IT. The nodes corresponding to the final association result
are labeled by the indices of feature pairs.

Furthermore, though the number of nodes increases along
with the quantity of features, the computational complexity
remains tractable and the process of IT construction is proven
to be time-saving, as shown in Fig. 4. Because through
incrementally constraining the camera pose while expanding
the tree, the feature association and pose estimation are jointly
solved and the inconsistent hypotheses can be pruned timely
in the IT expansion process. As a result, the search space of an
IT is largely reduced, which leads to the high computational
efficiency of the IT-based algorithm. Also, we visualize the
constructed tree structures as well as the extracted features for
two indoor scenes in Fig. 5(b) and (c), respectively. Only the
nodes in the interpretation which is chosen as the association
result are labeled by the corresponding indices of features for
compactness. From the visualized tree structure we can see
intuitively that most subtrees of an IT are pruned at the early
stage of tree construction.

B. Experiments on Frame-to-Frame Registration

Unlike the visual descriptor-based feature matching, both
the IT-based method and RANSAC-based method compute the
camera transformation during the feature association. We run
the IT-based and the RANSAC-based methods, respectively,
using both plane and line features. Furthermore, the IT-based
method is also run using only planes and only lines, respec-
tively, to test the improvement on accuracy after combining
them. The translation and rotation errors of the four methods
are compared. As can be seen obviously from Fig. 6(a), the
IT-based algorithm using both planes and lines gains the best
results in term of the translation error in most cases. The
rotation errors of four methods are shown in Fig. 6(b). Because
the comparison results in terms of the rotation error cannot be
clearly seen in the figure, we further compute the mean and
variance of the rotation errors for each method as in Table III.
It can be seen that the IT-based method using both features
has the smallest mean and variance compared with the other
three methods.

Fig. 6. Comparison of the matching error. (a) Translation error. (b) Rotation
error.

TABLE III

COMPARISON OF THE ROTATION ERROR AMONG FOUR METHODS

For the pose estimation using only plane features, degen-
eracy frequently occurs such that the solution cannot be fully
constrained. The issue of degeneracy was discussed in our

Authorized licensed use limited to: Zhejiang Lab. Downloaded on December 30,2022 at 09:06:46 UTC from IEEE Xplore.  Restrictions apply. 



SUN et al.: IT-HYFAO-VO: IT-BASED VO WITH HYBRID FEATURE ASSOCIATION AND OPTIMIZATION 5015218

TABLE IV

RATIO OF CONSTRAINED CASES FOR THE IT-BASED METHOD
USING ONLY PLANE FEATURES

previous work [49] and was also mentioned in [12] and [20].
The estimation results of the IT-based method using only
planes, which are shown in Fig. 6 does not include the
degenerate cases. The ratio of cases that the planes provide
sufficient constraints is given in Table IV, which shows that
the degenerate cases occur in all scenes. Theoretically, the pose
estimation using line features may also suffer from degeneracy.
However, the quantity of extracted lines is generally larger than
that of planes and only two non-planar lines can fully constrain
the camera pose. As a result, degeneracy is much less likely
to occur for line features. In our experiments, no degeneracy
occurs over all the sequences. Nevertheless, Fig. 6 shows that
the pose estimation using lines is less accurate than that using
planes because lines are more likely to be detected on edges
of objects, where the measurement noise is more severe [11].
Therefore, the combination of plane and line features not only
increases the accuracy of pose estimation but also alleviates
the problem of degeneracy.

C. Experiment on Joint Optimization

In this section, an ablation experiment is carried out to
demonstrate the performance of the hybrid feature joint opti-
mization. In the experiment, the IT-HYFAO-VO is run with
the optimization using hybrid features, only plane features,
and only line features, respectively, given the same feature
association results. The root mean square errors (RMSEs)
of the relative pose error (RPE) are computed for the three
VO systems and the results are shown in Table V. It can
be seen that the accuracy of the VO using hybrid features
is obviously superior to the ones using only plane or line
features. As is illustrated in Section V-B, the plane feature-
based VO may suffer from the degenerate problems, and the
ratios of nondegenerate cases for each sequence are also given
in Table V. Note that the pose estimates corresponding to the
degenerate solutions are not used to compute the RPE results.
We can find that, even in the situations that the pose estimation
can be fully constrained by the plane features, most of the
optimization results using only plane features are less accurate
than using hybrid features. As for the line features, although
no degeneracy occurs, the resultant RPEs are larger than both
the plane feature-based VO and the hybrid feature-based VO.

D. Evaluation of VO

In this subsection, the proposed IT-HYFAO-VO is evaluated.
Three state-of-the-art VO algorithms are chosen for compar-
ison: Prob-RGBD-VO [11], Canny-VO [50], and STING-VO
that is presented in our previous work [49]. Prob-RGBD-VO

is a robust VO that combines point, line, and plane features
extracted through an RGB-D camera. The probabilistic plane
and line fitting methods are used to model the uncertainties.
Then, the pose is calculated considering the uncertainties of
features. The STING-VO is achieved by aligning the plane fea-
tures extracted from two successive frames. When the planes
cannot fully constrain the problem, a scan alignment based
on the statistical information grid is performed to estimate the
remaining DoFs of the camera pose. Both the Prob-RGBD-VO
and STING-VO use high-level geometric features to estimate
the camera poses. The Canny-VO is an efficient RGB-D odom-
etry system achieved by aligning the Canny edges extracted
from the images. Though the Canny-VO does not use the high-
level features directly, it exploits the geometric property of
the edge structure during the process of a free-form curve
registration.

Table VI presents the comparison results in terms of the
RMSEs of the absolute trajectory error (ATE) and the RPE,
among which the results of the Prob-RGBD-VO and the
Canny-VO are reported in [11] and [50], respectively. It can be
seen from Table VI that the proposed IT-HYFAO-VO performs
better than or on par with the state-of-the-art VO algorithms
on most sequences. Though the Prob-RGBD-VO combines
multiple geometric features and considers the uncertainties
of features as the IT-HYFAO-VO does, it does not exploit
the geometrical relationships between different features. As
for the edge-based VO algorithm, the measurement noises on
the edges of objects are generally more severe than those on
the plat surfaces. Therefore, the Canny-VO tends to get good
results only when the edges can be clearly extracted. To further
demonstrate the superior performance of the IT-HYFAO-VO
pipeline, the overall statistical results are presented. Five stan-
dard statistics (mean, median, std., min and max) over all the
sequences in Table VI are computed and listed in Table VII.
As can be seen from Table VII, the performance of the
IT-HYFAO-VO has overall better statistics than the compari-
son methods.

In addition, to demonstrate the real-time performance of
the proposed VO pipeline, the statistics of runtime for the
VO system are presented in Fig. 7(a). It can be seen that the
proposed IT-HYFAO-VO runs at 7-10 Hz, which definitely
meet general requirements for real-time performance. Further-
more, the module-wise average runtime is computed on each
image sequence and the results are given in Fig. 7(b). It is
obvious that the hybrid feature association and joint optimiza-
tion modules, which are our main contributions, are quite time-
saving, compared with the feature extraction procedure.

E. Evaluation of SLAM

To further verify the accuracy of the proposed
IT-HYFAO-VO, we add a back-end factor-graph optimization
process to yield a complete SLAM system (abbreviated
as IT-HYFAO-SLAM in the following) and compare it
with state-of-the-art RGB-D SLAM systems. As are listed
in Table VIII, the comparison methods include point-
feature-based SLAM system [51], geometric-feature-based
ones [49], [52], multifeature-based ones [53], [54], and
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TABLE V

RESULTS OF USING DIFFERENT FEATURES IN JOINT OPTIMIZATION IN TERMS OF RMSE OF RPE

TABLE VI

COMPARISON OF VO IN TERMS OF RMSEs OF ATE AND RPE

TABLE VII

OVERALL STATISTICS OF THE RESULTS IN TABLE VI

map-fusion-based ones [55]–[57]. The ORB-SLAM2 [51]
is widely acknowledged as the most efficient open-source
implementation of the point-feature-based SLAM algorithm.
Both the CPA-SLAM [52] and STING-SLAM [49] use plane
features. The CPA-SLAM tracks the camera motion via a
direct image alignment toward the keyframes as well as a
global plane model, while the STING-SLAM computes the
pose of the RGB-D camera directly using parameters of
plane features. The PL-SLAM [53] and PinpointSLAM [54]
combine the geometric features (planes or lines) with the
point features. And the ElasticFusion [55], GC-SLAM [56]
and PSM-SLAM [57] are based on map fusion and dense
alignment of the scans. We run the IT-HYFAO-SLAM in
various scenes from different datasets and compare it with
the other eight methods, whose results were reported in
the literature [52]–[57], as shown in Table IV. It is shown
from Table VIII that the IT-HYFAO-SLAM system compares
favorably with other state-of-the-art SLAM methods. As in
the evaluation of the VO methods, the overall statistical
results are also computed for the SLAM methods. Table IX

Fig. 7. (a) Statistics of the runtime and (b) modulewise average runtime for
the IT-HYFAO-VO on the sequences in Table VI.

lists the five statistics over all the sequences in Table VI.
We can see that the IT-HYFAO-SLAM system get the best
results in terms of the mean, std. and max statistics, which
further demonstrates the good performance of the proposed
method.
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TABLE VIII

COMPARISON OF SLAM IN TERM OF ATE RMSE

TABLE IX

OVERALL STATISTICS OF THE RESULTS IN TABLE VIII

VI. CONCLUSION

In this article, the IT-HYFAO-VO system has been devel-
oped using high-level geometric features (planes and lines). To
associate multiple geometric features simultaneously, a unified
framework has been proposed based on the IT. The IT expan-
sion method has been elaborately designed for the association
of multiple geometric features. The proposed method has been
evaluated and compared with the state-of-the-art methods in
different public datasets and has shown good performance.

In the proposed IT-HYFAO-VO method, complementary
advantages of different features are exploited to improve the
accuracy and alleviates the problem of degeneracy. Compared
with the widely used NN search-based or RANSAC-based
association of geometric features, all the possible hypotheses
are properly structured in an IT structure and optimal solutions
to both the feature association and the pose estimation can be
obtained in a closed form, which guarantees that the associated
features are consistent under common transformations. Addi-
tionally, the proposed framework is theoretically extensible
to any combination of different types of features, such as
points, lines, and planes. Furthermore, the geometric features,
such as planes and lines, encode more higher-level semantic
information of indoor environments, which is beneficial for
robot tasks like scene recognition and understanding. It needs
to be pointed out that the proposed IT-HYFAO-VO method is
theoretically independent of the sensor type as well as the spe-
cific feature extraction algorithm. Therefore, IT-HYFAO-VO
can be easily extended to other sensors, such as a monocular

vision or Lidar sensor, as long as parameters of the extracted
features can be computed. In future works, we plan to combine
the point features with high-level geometric features in one
unified framework to further improve the accuracy and robust-
ness of the system. Further, the visual appearance provided
by the point features as well as the structural information
provided by the geometric features is planned to be exploited
simultaneously to benefit the high-level tasks of the robot.

APPENDIX A
ROTATION CONSISTENCY

In this appendix, the detailed solution to (3) is given. The
rigid rotation in 3-D space can be formulated as ec = Rer ,
with e being the unit direction vector and R ∈ SO(3) the
rotation matrix. Specifically, R can be expressed as

R = Rot(r, θ) = cos θ I + (1 − cos θ)r rT + sin θ [r]× (16)

where r is the unit axis about which the rotation takes place,
and θ is the angle of rotation about r . Given the rotation axis
r and a pair of feature directions ec and er (r, ec and er are
not collinear), substitute (16) into ec = Rer and the rotation
angle θ can be calculated by

θ = �(r, ec, er ) = atan2(sin θ, cos θ) (17)

cos θ = 1 − 1 − eT
r ec

1 − (
rT ec

)(
rT er

) , sin θ =
(
r × er

)T
ec

1 − (
rT ec

)(
rT er

) .
(18)
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Fig. 8. (a) Left: rotation axes lie on the plane perpendicular to ec − er . Right: Resultant rotation axis with 1DoF can be expressed by two basis vectors rx

and r y on the plane. (b) If ei
c = ei

r and e j
c �= e j

r , the rotation axis is simply ei
c(ei

r ). (c) Left: illustration of the angles αi and βi . Right: illustration of the
angles γi , γ j and δ. (a) Case I. (b) Case II. (c) Case III.

Because a rigid rotation preserves orientation, 〈ei
c, e j

c 〉 =
〈ei

r , e j
r 〉 holds true if there exists a feasible solution R to (3),

with 〈·, ·〉 denoting the angle between two vectors. Besides,
a rotation also preserves the angle between the transformed
vector and the direction of rotation. As a result, the set of
potential rotation axes that satisfies (3) is given by{

r
∣∣rT ei

c = rT ei
r , rT e j

c = rT e j
r , rT r = 1

}
. (19)

According to the spatial configuration of the direction
vectors, the solution to (3) can be classified into four cases,
which are presented in the following.

Case I: ei
c = e j

c and ei
r = e j

r .
In this case, the direction vectors of the two features ei

c and
e j

c (or ei
r and e j

r ) in the same coordinate system coincide with
each other. Let ec = ei

c = e j
c and er = ei

r = e j
r .

If ec = er , then the rotation axis is ec and the set of
consistent rotations is R = {R|R = Rot(ec, ϕ), ϕ ∈ R}.
If ec �= er , the set of rotation axes defined in (19) can be
rewritten as {

r
∣∣rT (ec − er ) = 0, rT r = 1

}
. (20)

It is clear from (20) that the unit axis r lies on the plane
perpendicular to vector ec−er , as seen in Fig. 8(a). Thus, r has
one degree of freedom (DoF). Without loss of generality, let

rx = er × ec

‖er × ec‖ , r y = er + ec

‖er + ec‖ (21)

which form a basis on the plane perpendicular to ec − er . The
rotation axis satisfying (20) can be represented by

r(ϕ) = r x cos ϕ + r y sin ϕ, ϕ ∈ R (22)

∀ϕ ∈ R, the angle of rotation corresponding to r(ϕ) can be
computed by θ(ϕ) = �(r(ϕ), ec, e).

In conclusion, for the case that ei
c = e j

c and ei
r = e j

r ,
the rigid rotation that satisfies the rotation consistency has
one DoF. The set of consistent rotations is denoted by R =
{R|R = R(ϕ), ϕ ∈ R}, with

R(ϕ) =
{

Rot(ec, ϕ), if ec = er

Rot(r(ϕ), θ(ϕ)), if ec �= er .
(23)

Case II: At least one of the equations ei
c = ei

r and e j
c = e j

r

is satisfied (ei
c �= e j

c ).
In this case, the directions of at least one pair of correspond-

ing geometric features coincide with each other.
If both ei

c = ei
r and e j

c = e j
r hold true, then the resultant

rotation matrix is R = I . If ei
c = ei

r and e j
c �= e j

r , then the

rotation axis is r = ei
c and the rotation angle can be computed

by θ = �(r, e j
c , e j

r ), as illustrated in Fig. 8(b). Likewise,
if e j

c = e j
r and ei

c �= ei
r , then r = e j

c , θ = �(r, ei
c, ei

r ). In
summary, the resultant rotation matrix can be determined by

R=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

I, if ei
c = ei

r and e j
c = e j

r

Rot
(

ei
c,�

(
ei

c, e j
c , e j

r

))
, if ei

c = ei
r and e j

c �= e j
r

Rot
(

e j
c ,�

(
e j

c , ei
c, ei

r

))
, if ei

c �= ei
r and e j

c = e j
r .

(24)

Case III: (ei
c − ei

r ) × (e j
c − e j

r ) = 0 (ei
c �= e j

c , ei
c �= ei

r ,
e j

c �= e j
r ).

In this case, although the rotation axis r cannot be deter-
mined directly by (19), it can be calculated by solving

�
(
r, ei

c, ei
r

) = �
(
r, e j

c , e j
r

)
. (25)

From (17) and (18), (25) can be rewritten as⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 − 1 − ei
r

T ei
c

1 − (
rT ei

c

)(
rT ei

r

) = 1 − 1 − e j
r

T
e j

c

1 −
(

rT e j
c

)(
rT e j

r

)
(
r × ei

r

)T
ei

c

1 − (
rT ei

c

)(
rT ei

r

) =
(

r × e j
r

)T
e j

c

1 −
(

rT e j
c

)(
rT e j

r

) .

(26)

Denote several included angles by

αi = 1

2

〈
ei

r , ei
c

〉
, α j = 1

2

〈
e j

r , e j
c

〉
βi = 〈

r, ei
r

〉 = 〈
r, ei

c

〉
, β j = 〈

r, e j
r

〉 = 〈
r, e j

c

〉
γi = 〈

r, ei
r × ei

c

〉
, γ j = 〈

r, e j
r × e j

c

〉
. (27)

After some algebraic calculation, (26) can be rewritten as

sin2 αi

sin2 βi
= sin2 α j

sin2 β j
(28)

cos γi sin αi cos αi

sin2 βi
= cos γ j sin α j cos α j

sin2 β j
. (29)

From the criteria ei
c �= ei

r and e j
c �= e j

r , it is obvious that
sin αi �= 0 and sin α j �= 0. And from ei

c �= e j
c , we know that

if cos αi = 0 then cos α j �= 0, and vice versa. If cos αi = 0,
from (29) we know that cos γ j = 0 and the rotation axis is r =
η(e j

c + e j
r ) with η denoting the normalizing factor. Likewise,

if cos α j = 0, then r = η(ei
c + ei

r ).
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If cos αi �= 0 and cos α j �= 0, combining (28) and (29)
yields

cos γi

tan αi
= cos γ j

tan α j
. (30)

Let

r i
x = ei

r × ei
c∥∥ei

r × ei
c

∥∥ , r i
y = ei

r + ei
c∥∥ei

r + ei
c

∥∥
r j

x = e j
r × e j

c∥∥∥e j
r × e j

c

∥∥∥ , r j
y = e j

r + e j
c∥∥∥e j

r + e j
c

∥∥∥ . (31)

It is obvious that r i
x and r i

y are orthogonal to each other.
γi is the angle between r and r i

x , as illustrated in Fig. 8(c),
and it can be expressed by

γi = atan2
(
rT r i

y, rT r i
x

)
. (32)

And let

δ = atan2
(

r j
x

T
r i

y, r j
x

T
r i

x

)
. (33)

From (27), (32) and (33), it can be known that γ j = γi − δ,
as shown in Fig. 8(c). Substitute γ j into (30) and we obtain

γi = atan2

(
tan α j

tan αi
− cos δ, sin δ

)
. (34)

Thus, the axis r is

r = r i
x cos γi + r i

y sin γi . (35)

Note that for the aforementioned special cases cos αi = 0
and cos α j = 0, the results can also be included in the unified
formulation (35).

Case IV: The general case [(ei
c−ei

r )×(e j
c −e j

r ) �= 0, ei
c �= e j

c ,
ei

c �= ei
r , e j

c �= e j
r ].

According to (19), the rotation axis lies on the planes
perpendicular to the vectors ei

c − ei
r and e j

c − e j
r , respectively.

Therefore, the rotation axis can be determined by r = η(ei
c −

ei
r ) × (e j

c − e j
r ), where η is the normalizing factor. Then,

the rotation angles θi = �(r, ei
c, ei

r ) and θ j = �(r, e j
c , e j

r )
are computed, respectively. If θi = θ j , then the two nodes are
rotation consistent under R = Rot(r, θi).

Among the above four cases, the 3DoF rotation can be fully
constrained in three cases, except case I, which corresponds
to a special configuration of the directions of features. In the
following, the translation consistency is calculated given the
results of the rotation consistency.

APPENDIX B
TRANSLATION CONSISTENCY

In this section, the computation of the translation con-
sistency is presented. Three different cases are dealt with
separately, i.e., plane-plane case, line-line case and plane-line
case.

A. Plane-Plane Case

F i
c = π i

c,F i
r = π i

r ,F
j

c = π
j

c ,F j
r = π

j
r .

When two pairs of plane features are known to be rotation
consistent under any R ∈ R, their consistent translations can
be calculated by solving the following linear equations:

ni
c

T
t = di

r − di
c

n j
c

T
t = d j

r − d j
c . (36)

Rewriting (36) in a matrix form yields

App t = bpp (37)

App =
[

ni
c

T

n j
c

T

]
, bpp =

[
di

r − di
c

d j
r − d j

c

]
. (38)

If ni
c = n j

c = nc, i.e., the planes in the same coordi-
nate systems are parallel to each other, it is obvious that
rank(App) = 1. In this case, if the linear system (37) has
solutions, it requires that rank([App|bpp]) = 1, i.e., di

r − di
c =

d j
r − d j

c . Since rank([App|bpp]) = rank(App) < 3, the linear
system (37) has infinite solutions with two DoFs

t = tpp1 + [wpp1]×μ (39)

where

wpp1 = nc, μ ∈ R
3

tpp1 =
(

AT
pp1 App1

)−1
AT

pp1bpp1

App1 =
[

App

[wpp1]×

]
, bpp1 =

[
bpp

0

]
. (40)

If ni
c �= n j

c , i.e., the planes in the same coordinate system are
nonparallel, then rank(App) = 2. Because rank([App|bpp]) = 2
holds true, the linear system (37) has infinite solutions which
have one DoF

t = tpp2 + μwpp2 (41)

where

wpp2 = ni
c × n j

c , μ ∈ R

tpp2 =
(

AT
pp2 App2

)−1
AT

pp2bpp2

App2 =
[

App

wT
pp2

]
, bpp2 =

[
bpp

0

]
. (42)

B. Line-Line Case

F i
c = Li

c,F i
r = Li

r ,F
j

c = L j
c ,F j

r = L j
r .

In the case of two line pairs, given the consistent rotation
R ∈ R, the consistent translation can be calculated by solving
the following linear equations:[

vi
c

]
× t = Rui

r − ui
c[

v j
c

]
× t = Ru j

r − u j
c . (43)

Rewrite (43) in a matrix form

All t = bll (44)

All =
⎡
⎣
[
vi

c

]
×[

v
j
c

]
×

⎤
⎦, bll =

[
Rui

r − ui
c

Ru j
r − u j

c

]
. (45)

If vi
c = v

j
c = vc, i.e., the lines in the same coordinate system

are parallel to each other, then rank(All) = 2. The linear
system (44) has solutions if and only if rank([All|bll]) = 2,
which requires that

Rui
r − ui

c = Ru j
r − u j

c . (46)
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According to the properties of the rotation matrix R, (46) is
equivalent to the following equations:∥∥ui

r − u j
r

∥∥ = ∥∥ui
c − u j

c

∥∥ (47)

R · ui
r − u j

r∥∥∥ui
r − u j

r

∥∥∥ = ui
c − u j

c∥∥∥ui
c − u j

c

∥∥∥ . (48)

As known from Algorithm 1, if vi
c = v

j
c , the consistent

rotation R has one DoF. Let vr = vi
r = v

j
r . In this case, if (47)

holds true, we need to solve for a rotation to satisfy (48) and
vc = Rvr simultaneously by

ROTATIONCONSISTENCY

⎛
⎝vc, vr ,

ui
c − u j

c∥∥∥ui
c − u j

c

∥∥∥ ,
ui

r − u j
r∥∥∥ui

r − u j
r

∥∥∥
⎞
⎠.

If the returning value is not Ø, then N i and N j are
translation consistent and the resultant translation has one DoF

t = t ll1 + μwll1 (49)

where

wll1 = vc, μ ∈ R

t ll1 = (
AT

ll1 All1
)−1

AT
ll1bll1

All1 =
[

All

wT
ll1

]
, bll1 =

[
bll

0

]
. (50)

If vi
c �= v

j
c , i.e., the lines in the same coordinate system are

nonparallel, then rank(All) = 3. The linear system (44) has
solutions if and only if rank([All|bll]) = 3, which requires

l
(
Li

r ,L j
r

)− l
(
Li

c,L j
c

) = (
Rui

r − ui
c

)T
v j

c

+ (Ru j
r − u j

c

)T
vi

c = 0 (51)

where l(Li ,L j ) = ui T
v j + u j T

vi represents the vertical
distance between two 3-D lines. Criterion (51) means that the
vertical distance between two lines in the current frame equals
to that between the corresponding two lines in the reference
frame. If (51) is satisfied, the translation is constrained and
can be computed by

t = (
AT

ll All
)−1

AT
ll bll. (52)

C. Plane-Line Case

F i
c = π i

c,F i
r = π i

r ,F
j

c = L j
c ,F j

r = L j
r .

In this case, one pair of planes (π i
c and π i

r ) and one pair
of lines (L j

c and L j
r ) are considered. If their orientations are

aligned by R ∈ R, the consistent translation that makes
N i and N j internode consistent is computed by solving the
following equation:

ni
c

T
t = di

r − di
c[

v j
c

]
× t = Ru j

r − u j
c . (53)

Rewrite (53) in a matrix form as

Apl t = bpl (54)

Apl =
⎡
⎣ ni

c
T[

v
j
c

]
×

⎤
⎦, bpl =

[
di

r − di
c

Ru j
r − u j

c

]
. (55)

If ni
c

T
v

j
c = 0, i.e., the plane and the line in the

same coordinate system are parallel to each other, then
rank(Apl) = 2 because ni

c is in the column space of [v j
c ]×.

Thus, rank([Apl|bpl]) = 2 holds true if

l
(
π i

r ,L j
r

)− l
(
π i

c,L j
c

) = ni
c

T [
v j

c

]
×
(
Ru j

r − u j
c

)
+ (di

r − di
c

) = 0 (56)

where l(π,L) = nT [v]×u + d represents the vertical distance
between π and L which are parallel to each other. In other
words, if the vertical distance between the plane and the line
in the current frame equals to that in the reference frame,
the linear system (54) has solutions which have one DoF

t = tpl1 + μwpl1 (57)

where

wpl1 = v j
c , μ ∈ R

tpl1 =
(

AT
pl1 Apl1

)−1
AT

pl1bpl1

Apl1 =
[

Apl

wT
pl1

]
, bpl1 =

[
bpl

0

]
. (58)

If ni
c = v

j
c , i.e., the line is vertical to the plane in the

same coordinate system, then rank(Apl) = 3. As known from
Algorithm 1, in this case, the consistent rotation has one DoF.
Solving (54) directly yields

t = (
di

r − di
c

)
ni

c − [
v j

c

]
×
(

Ru j
r − u j

c

)
= (

di
r − di

c

)
ni

c + v j
c × u j

c + R
(
u j

r × v j
r

)
= tpl2 + Rwpl2, R ∈ R. (59)

It is obvious from (59) that the resultant translation t has
one DoF ϕ as the rotation R does.

If ni
c

T
v

j
c �= 0 and ni

c �= v
j
c , then rank(A) = 3. In this

case, rank([A|b]) = 3 holds true. Thus, the translation is
constrained and can be computed directly by

t =
(

AT
pl Apl

)−1
AT

plbpl. (60)
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