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Abstract: Extraterrestrial exploration is one of the most significant missions for the development of countries . Dif­
ferent sensors are used in an extraterrestrial exploration mission for different kinds of tasks, such as navigation and 
grasping . Correct extrinsic parameters for multiple sensors is fundamental for the performance of high-level tasks. 
Although the extrinsics can be accurately calibrated offline, they easily become inaccurate due to the vibration of 
the vehicle during the tasks. In this paper, an online extrinsic calibration algorithm is proposed for extraterres­
trial exploration. Extrinsic parameters of RGB and ToF (time-of-flight) cameras are automatically adjusted while 
navigating the environment . The online calibration is achieved by the alignment of edges extracted from the RGB 
image and ToF intensity image, respectively. An edge registration algorithm is proposed and the probabilistic 
properties of pixels on edges are exploited for the alignment of the edges extracted from heterogeneous sensors. 
Experiments executed in the simulated extraterrestrial environment demonstrate effectiveness and efficiency of the 
proposed algorithm. 
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1 Introduction 

Navigating an extraterrestrial scene is a very chal­
lenging task due to the uncertainty in environments and 
limitations in communications (see Fig. 1 ) .  An explo­
ration rover is usually equipped with multiple sensors 
for the perception and navigation of the extraterrestrial 
environments [1-3] . Among them, the visual sensor is 
one of the most important types of sensors [4-7] . RGB 
cameras can easily provide sufficient texture informa­
tion for perception tasks. However, it is difficult for 
RGB cameras to reconstruct the structure of the envi­
ronment . ToF cameras, on the other hand, have the 
advantages of dense range measurements and also the 
fast scanning speed [8, 9] . But the resolution of ToF 
cameras is often much lower can RGB cameras . As a 
result , it is significantly beneficial to combine them to­
gether for a better performance of the whole system 
[10-13] . 

To obtain an efficient fusion of the perceptual infor­
mation from RGB and ToF cameras, an accurate cali­
bration result is required. There have been some related 
works on the calibration of RGB and ToF cameras . Zhu 
et al. [14] introduced an empirical calibration method, 
which builds a look-up table mapping observed intensity 
and 3D positions to ground-truth distance . Gao et al . 
[15] proposed a joint extrinsic calibration method for a 
ToF-IMU-RGB-camera system. Specifically, a pattern 
was designed with white circles on a black background 
and the measurement errors were corrected using an er­
ror distribution model with a B-spline function. Jung 
et al . [ 16] presented a calibration method of a ToF and 
color camera pair by designing a 2.5D pattern board 
with irregularly distributed holes on it. And the ray 
correction and range bias correction are performed to 
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Fig. 1: The extraterrestrial scenes on (a) Lunar and (b) 
Martian surfaces . 

improve the accuracy of the 3D measurements of a ToF 
camera. 

However, for all the above mentioned methods, an 
off-line calibration procedure is performed. As can be 
seen in Fig. 1 ,  rugged terrains are contained in the ex­
traterrestrial environments, and the extrinsic parame­
ters can easily become inaccurate because it is impos­
sible for the rover to move smoothly. As a result, it 
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is important to automatically adjust the extrinsic pa­
rameters during the exploration process. Huang et al . 
[17] proposed a simple and efficient calibration method 
for a system composed by a Kinect V2 and color cam­
eras, using point correspondences between the depth 
and color images . Nevertheless, for the challenging ter­
rains in extraterrestrial environments, it is impossible 
to efficiently extract and match visual point features 
between the ToF and RGB camera pair [ 18] . 

Compared with visual point features, edges can be 
robustly extracted and matched from heterogeneous vi­
sual cameras [ 19] . Edges are extensively utilized in the 
online calibration of camera and LiDAR [20-22] . For 
the extraterrestrial environments, there are hardly any 
efficient edges extracted from the depth image because 
of the terrain. However, the intensity image captured by 
a ToF camera can be used for edge extraction, because 
the intensity measurements are related to the material 
of the object surfaces . 

In this paper, we proposed an online extrinsic cal­
ibration algorithm for RGB and ToF cameras. The 
extrinsics of RGB and ToF cameras are adjusted on­
line while exploring the extraterrestrial environment . 
Edges are extracted from the RGB image and ToF in­
tensity image, respectively. Then, the edges are aligned 
in the RGB image through an ICP (iterative closest 
point) [23]-style registration process. The cost function 
of the optimization is specifically designed for the 2D 
edge registration. 

2 Edge Registration-based Online Calibration 

In this section, an ICP-based edge registration algo­
rithm is proposed for the online calculation of the ex­
trinsic parameters between the ToF and RGB cameras . 
First of all, the canny edges are detected in both the in­
tensity image captured by a ToF camera and the RGB 
image captured by a visual camera. Then, the camera 
projection model is introduced for the projection of a 
pixel on the ToF intensity image onto the correspond­
ing pixel on the RGB image plane . Next, the ICP-based 
edge registration algorithm is presented, exploiting the 
probabilistic characters of pixels on edges. Finally, the 
extrinsic parameters between the two cameras are op­
timized via the edge registration process. In the fol­
lowing, the online calibration algorithm is presented in 
detail. 

Table 1 :  Selection of high and low threshold values for 
Canny edge detection. 

Canny thresholds high threshold low threshold 

RGB image 200 150 

ToF intensity image 20 10  

2 . 1  Canny Edge Detection 

The Canny edge detection is used in our method, 
which is a popular edge detection algorithm developed 
by John F. Canny in [24] . In the experiment , we use the 
Canny edge detection implemented in OpenCV library. 
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The Canny edges are extracted from the RGB im­
age and ToF intensity image, respectively. Note that 
the resolution of the RGB image (2048 x 2048) is much 
higher than that of the intensity image (640 x 480) .  
Therefore, i t  needs to  be  careful in  selecting the high 
and low threshold values for Canny edge detection [24] . 
In our implementation, we test different combinations 
of threshold values for the two kinds of images. It turns 
out that the threshold values listed in Tables 1 yield the 
best performance of the system. 

2 .2 Camera Projection Model 

The pixel coordinates in ToF intensity image can be 
projected onto the RGB image plane, given the intrinsic 
parameters of the two cameras as well as the extrinsic 
parameters between them. Because the depth informa­
tion is obtained for each pixel of the ToF intensity image 
and the 3D point in the ToF camera coordinate system 
can be reconstructed. 

For a pixel Ut in the intensity image, the correspond­
ing depth measurement is denoted by D( Ut ) .  The 3D 
point Pt in the ToF camera coordinate system corre­
sponding to Ut can be computed by 

( 1 )  

where Kt i s  the intrinsics o f  the ToF camera, which 
is calibrated offline. The function 1r- 1 ( - ) is the in­
verse projection of the ToF camera model, which can 
be uniquely solved given the depth measurement D( Ut )  
for the pixel. 

If the extrinsics between the ToF and RGB cameras 
are known, the 3D point Pc in the RGB camera coordi­
nate system is calculated by 

Pc = RctPt + ict (2) 

where Ret E §1Jl(3) and tct E JR3 represent the extrinsics 
between the two cameras, i .e . ,  the rotation and trans­
lation, respectively, from the ToF coordinate system to 
the RGB camera coordinate system. Then, the pixel 
coordinates on the RGB image plane can be computed 
by 

(3) 

where K c is the intrinsics of the RGB camera obtained 
from an offline calibration process. 

2.3 ICP-based Edge Registration 

Based on the camera projection model introduced in 
the previous sub-section, an ICP-based edge registra­
tion algorithm is presented for an online calibration of 
the two sensors. Specifically, an overall cost function is 
designed to align the edges extracted from the RGB and 
ToF intensity images, respectively. In each iteration of 
the ICP process, the correspondences are established 
using the previous estimate of the extrinsic parameters. 
Then, the optimization is performed to minimize the 
cost function based on the newly established correspon­
dences. Different from the ICP algorithm for the 3D 
point cloud registration, we use the residuals between 
edges from two images to constrain the transformation 
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between the two sensors . And the local probabilistic 
properties of the pixels on edges are modeled and uti­
lized in the optimization process. 

The pixels on Canny edges extracted from the RGB 
and ToF intensity images are denoted by { Uc,i , i = 
1, · · · , Nc} and { Ut,i , i = 1 ,  · · · , Nc} ,  respectively. Note 
that the pixel coordinates with the same subscript i rep­
resent a correspondence obtained in each iteration. And 
Nc represents the number of the corresponding pairs of 
the pixels from two sensors. For each pixel on the edges, 
the covariance is estimated using the local distribution 
of pixels on the edges. Without loss of generality, we 
consider a pixel Uc,i on the RGB image . The calculation 
for the pixels on the ToF image is likewise. 

First of all, a kd-tree structure is constructed using all 
the pixels on the edges. And the N nearest neighbors 
of Uc,i are searched using the kd-tree structure. In our 
experiment, we found that N = 20 yields the best per­
formance in terms of accuracy and efficiency. Then, the 
covariance matrix corresponding to Uc,i is calculated by 

1 N . 
1-lc,i = 

N L u�,i 
j=l 

N 

Cc,i = 
N � 1 L ( u�,i - 1-lc,i) ( u�,i - 1-lc,i) T 

j= l  

(4) 

where u�,i denotes the j-th neighbor of the pixel Uc,i , 
1-lc,i is the mean value of the N neighbors, and Cc,i rep­
resents the estimate of the covariance. To clarify the 
local probabilistic properties of the Uc,i , perform the 
eigenvalue decomposition of C c,i , yielding the eigenval­
ues ..\1 and ..\2 . Note that for a pixel on the edges, it 
is obvious that the eigenvalues satisfy ..\1 » ..\2 . This 
property is utilized in the ICP-based edge registration 
presented in the following. 

The cost function for the edge registration is defined 
as 

Nc 
E(Tct ) = L rfCiri (5 )  

i= l  
where 

t
1
ctl E §JE(3) (6) 

and 

Ti = Uc,i - Jr  (Ret (7r- 1 (ut,i , Kt, D(ut,i ) ) )  + ict, Kc) 

Ci = Cc,i + RctCt,iR� 
(7) 

In our method, the cost function (5 )  is specifically de­
signed for the 2D edge registration, as is illustrated be­
low. In the conventional ICP process, the edge pixels 
are associated via a nearest-neighbor search procedure. 
As a result , the corresponding pixels may not be located 
on the similar structure. As shown in Fig. 2(a),  the 
pixel Ut,i is associated to Uc,j according to the nearest­
neighbor criterion. However, it is obvious that accord­
ing to the geometrical structure, Ut,i and Uc,j are not 
the corresponding pixels. In our algorithm, the contri­
bution of the residual of the wrong correspondences Ut,i 
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and Uc,j is decreased by exploiting the local probabilis­
tic properties of the pixels on edges. Specifically, for the 
covariance of Ut,i , the eigenvalue ..\1 along the direction 
of the local edge is much greater than the eigenvalue 
..\2 along the normal direction of the edge, as can be 
seen in Fig. 2(b) . That is to say, each pixel on the edge 
provides a strong constraint along the normal direction, 
which aligns the edges strongly to each other along the 
normal . 

(a) 

..-_-----13------ -4 (' . ------------- � '·' 

(b) 

Fig. 2: Intuitive illustration of the local probabilistic 
property of edges. 

2.4 Extrinsic Transform Optimization 

In each iteration of the ICP-based edge alignment, 
the cost function (5 )  is optimized using Gauss-Newton 
algorithm. The extrinsic transform between RGB and 
ToF cameras is represented by Ten as in ( 6 ) .  Dur­
ing Gauss-Newton optimization, the minimal represen­
tation is given by 6-dimensional vector e E JR6 , of which 
the corresponding element of the Lie algebra is given by 

where ¢/\ is the skew-symmetric matrix corresponding 
to the vector ¢. 

Rewriting the cost function ( 5) in a matrix style yields 

(9 )  

where 

r =  [rf rT 2 TT ] T Nc 

c1 
c2 ( 10) 

C =  

In the n-th iteration of the Gauss-Newton optimization 
algorithm, an increment 5e(n) is computed by solving a 
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second-order approximation of (9 ) .  

( 1 1 )  

where J is the Jacobian matrix o f  the residual vector r 

with respect to the state vector. 

( 12) 

After the incremental update <Se(n) is obtained, the ex­
trinsic transform is optimized by 

( 13) 

where exp( · ) is the exponential map for matrix, which 
maps the element in the Lie algebra sc(3) to its corre­
spondence in the Lie group §JE(3) . 

3 Experiments 

The proposed algorithm is tested in the simulated 
extraterrestrial environment , as shown in Fig. 3. The 
simulated scene is mainly composed of sand and stones, 
similar to the actual extraterrestrial environment. It 
can be obviously seen from Fig. 3 that the extraterres­
trial environment is quite challenging for the commonly­
used feature matching algorithm, like SURF and ORB 
features, etc. The experimental datasets are collected 
by an exploration rover equipped with a Blaze- 101 ToF 
camera and a Mako G-419 RGB camera. The test plat­
form is with an Intel Core i9- 12950HX CPU at 2 .30 
GHz and 32GB RAM. 

3 . 1  Experiments on Accuracy 

The rover system is first calibrated offline with a pat­
tern board. Then, the rover navigates and performs 
some certain tasks for a period of time. After that, 
four image sequences are collected in the simulated ex­
traterrestrial scene that is shown in Fig. 3 .  The pro­
posed edge registration-based online calibration algo­
rithm is executed on every frame of the four sequences . 
Due to the highly challenging extraterrestrial environ­
ment, none of the current online calibration algorithms 
can be executed successfully. As illustrated in Fig. 4, 
the calibration outcomes are compared with the offline 
calibration based on the pattern board. The average 
re-projection errors for each sequence are listed in Ta­
bles 2 .  It can be seen that the re-projection errors of the 
proposed algorithm is much less than those of the tra­
ditional calibration procedure. Because the offline cali­
bration results cannot be automatically adjusted during 
the navigation missions, they can easily become inaccu­
rate, especially when the rover is running on the rugged 
terrain. 

Different from the pattern board-based calibration 
method, the proposed online calibration based on the 
edge registration automatically adjust the extrinsics be­
tween ToF and RGB sensors. The extrinsic parameters 
are calculated in real-time using the measurement infor­
mation by minimizing the re-projection errors . There­
fore, even if the configuration of the sensors changes due 
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(b) 

Fig. 3: The simulated extraterrestrial environment . 

Table 2: Average re-projection error over all the frames 
for the four sequences captured in the simulated envi­
ronment . 

Sequence pattern board edge registration 

Sequence 1 4. 78px 1 .85px 

Sequence 2 4.88px 1 .82px 

Sequence 3 4.96px 1 .98px 

Sequence 4 4.83px 1 .54px 

to the vibration of the rover, the extrinsic parameters 
can be adjusted in time. For the navigation and manip­
ulation missions, it is of great importance to maintain 
the accurate extrinsics of the sensors equipped on the 
rover. Because only if the calibration results between 
different sensors are kept accurate and stable, it is pos­
sible for the system to give good performance on the 
tasks which rely on the fusion of different onboard sen­
sors. 

3 .2 Experiments on Runtime 

The real-time performance of the calibration algo­
rithm is evaluated on the collected sequences . The run­
times on all the frames are computed and presented by 
the box-plot in Fig. 5. The median and mean values of 
the runtimes for each sequence are labeled by red solid 
line and blue dotted line, respectively. 

In the experiments, we execute the calibration on 
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Fig. 4 :  Comparison of the re-projection errors for four 
sequences captured in the simulated environment . 
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each frame of all the sequences to test the performance 
of the algorithm. Nevertheless, in the application, the 
online calibration only needs to be run at most once ev­
ery several seconds to correct the extrinsic parameters, 
which may be slightly changed in a short period of time 
due to vibration. As can be seen from Fig. 5, the run­
time of the online calibration procedure of our proposed 
algorithm is less than one second in most circumstances . 
As a result, the real-time performance of our algorithm 
can definitely support the online calibration during the 
exploration missions. 

1200 

1000 

Ill 800 E a; E ., " 600 
2 

400 

200 

0 Seq 4 

Fig. 5: Runtimes for four sequences captured in the 
simulated environment . 

4 Conclusion 

Because of the extremely challenging condition in 
the extraterrestrial environment, existing online cali­
bration method cannot be utilized directly for the ex­
traterrestrial exploration tasks . In this paper, an edge 
registration-based calibration algorithm is proposed for 
the online extrinsic calibration of RGB and ToF sen­
sors. The proposed method automatically adjust the 
extrinsic parameters of the two sensors by an ICP-based 
edge registration algorithm. The cost function for the 
edge alignment process is carefully designed exploiting 
the geometric properties of the pixels on the edges. As 
a result, the edges extracted from the two heteroge­
neous sensors can be aligned with high accuracy. Ex­
periments are executed in the simulated extraterrestrial 
environment to evaluate the accuracy and real-time per­
formance of the calibration system. It is demonstrated 
that compared to the offline pattern board-based cali­
bration, our method gets good performance on terms of 
both the accuracy and efficiency. 
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