
Operations Research - Assignment

Sun Qinxuan

May 20, 2017

1 Introduction

The scan matching technique plays an important role in the mobile robot simultaneous
localization and mapping (SLAM). The scan matching generally recovers the robot pose
by finding a transformation that best aligns the two successive scans. The alignment of
scans is usually achieved by minimizing the geometric error or photometric error between
two scans. In this paper, we aim to use a sparse Levenberg Marquardt algorithm [1] to
solve the scan matching problem. In the following, a formulation of the scan matching
problem is given in Section 2, and a brief introduction of the sparse LM algorithm is
presented in Section 3. The concrete implementation and some experimental results are
shown in Section 4.

2 Scan Matching

2.1 Minimization with Known Correspondences

We are given two 3D point sets {rpi, i = 1, ..., N} and {cpi, i = 1, ..., N} with rpi and
cpi representing a pair of corresponding points that satisfies

cpi = Rcr
rpi + tcr + εi (1)

where Rcr is a 3 × 3 rotation matrix, tcr is a translation vector and εi is a noise vector.
Then we want to find Rcr and tcr to minimize

E2 =
N∑
i=1

[cpi − (Rcr
rpi + tcr)]

T Ωi [cpi − (Rcr
rpi + tcr)] . (2)

Noted that if the information matrix Ωi is omitted, (2) turns into

E2 =
N∑
i=1

||cpi − (Rcr
rpi + tcr)||2. (3)

It has been proved in [2], [3] and [4] that minimization of (3) can be solved analytically.
But we will use the cost function in the form of (2) for the concern of the information
of the point distribution, and adopt the nonlinear optimization method to solve the
minimization problem.

1

2.2 Minimization with Unknown Correspondences

However, for most scan alignment problem, there is no correspondence before two sets
of scan data. In this case, Iterative Closest Point (ICP) algorithm [5] is utilized. The
key concept of the standard ICP algorithm can be summarized in two steps: (1) compute
correspondences between two scans. and (2) compute a transformation which minimizes
distance between corresponding points. The second step is related to the problem stated
in Section 2.1.

The distance metric used in the closest point search process is usually the Euclidean
distance. Since the scan data used in the scan matching is usually quite large. The brute
force nearest neighbor search is too time-consuming to achieve the real time performance.
So the kd-tree structure is often used in the look up of closest points and hence the speed
of the whole scan matching process can be maintained.

3 Nonlinear Optimization

In this section, two of the most common iterative parameter minimization methods,
i.e., Newton iteration and Levenberg-Marquardt iteration, are briefly introduced.

3.1 Gauss-Newton

Suppose we are given a model y = f(x) where x ∈ RM is the parameter vector that
is to be estimated and y ∈ RN is the measurement vector. A measured value of y is
provided, and we wish to find the vector x̂ that most nearly satisfies this functional
relation. That is to say, we seek the vector x̂ that minimizes

||ε||2 = ||f(x̂)− y||2. (4)

Note that f(·) is a nonlinear function, we need to start with an initial estimated value x0

and proceed to refine the estimate under the assumption that the function f(·) is locally
linear. Let ε0 be ε0 = f(x0)− y. Assume that the function f(·) can be approximated at
x0 by f(x0 + δx) = f(x0) + J · δx, where J is the Jacobian matrix J = ∂f/∂x. We aim
to find a point x1 = x0 + δx which minimizes f(x1)−y = f(x0) +Jδx−y = ε0 +Jδx. It
turns out to be a linear minimization problem, and the vector δx is obtained by solving
the normal equation

JTJδx = −JT ε0. (5)

Thus, the solution vector x̂ for next iteration is obtained by

xi+1 = xi + δxi (6)

Now we define the squared norm of the error ε as a scalar valued function g(x)

g(x) =
1

2
||ε(x)||2 =

1

2
ε(x)T ε(x). (7)

The optimization problem is to minimize g(x) over all values of x. Firstly, two assump-
tions are made: g(x) has a well-defined minimum value, and we know an initial point x0

reasonably close to the minimum. Then g(x) is expanded about x0 in a Taylor series as

g(x0 + δx) = g(x0) + gxδx +
1

2
δxTgxxδx + ... (8)

2

To minimize this quantity w.r.t. δx, we differentiate w.r.t. δx and set the derivative to
zero, yielding the equation

gxxδx = −gx. (9)

In this equation, gxx is the matrix of second derivatives, i.e., the Hessian of g and the
vector gx is the gradient of g. From equation (7) we know that

gx = εTx ε (10)

and
gxx = εTx εx + εTxxε. (11)

Under the assumption that f(x) is linear, the second term on the right vanishes, leaving

gxx = εTx εx = JTJ. (12)

This assumption is reasonable when the second term of (11) is small enough to be
negligible compared to the first term. Actually in practice, the term multiplying the
second derivative in (11) is the random measurement error. Hence for a successful model,
this error tend to cancel out when summed over all the measurements. So this procedure
in which JTJ is used as an approximation for the Hessian is known as the Gauss-Newton
method.

3.2 Gradient Descent

The negative gradient vector −gx = −εTx ε defines the direction of most rapid decrease
of the cost function. The strategy of moving iteratively in the negative gradient direction
is known as gradient descent. The length of the step is often computed by carrying out a
line search for the function minimum in the negative gradient direction. It can be written
as λδx = −gx, where λ controls the step length.

Gradient descent by itself is not a very good minimization strategy due to the zig-
zagging phenomenon when it is close to the minimum point. Thus the Levenberg-
Marquardt method is introduced which is essentially a Gauss-Newton method that tran-
sitions smoothly to gradient descent when the Gauss-Newton updates fail.

3.3 Levenberg-Marquardt

In the Levenberg-Marquardt (LM) iteration method, the normal equations JTJδx =
−JT ε are replaced by the augmented normal equations (JTJ + λI)δx = −JT ε. Here I is
the identity matrix, and the value of λ varies from iteration to iteration.

Solving the augmented normal equations yields an increment δx. If δx leads to a
reduction in the error, then the increment is accepted and λ is divided by a factor before
the next iteration. On the other hand if it leads to an increased error, then λ is multiplied
by the same factor and the augmented normal equations are solved again. This process
continues until a value of δx is found that gives rise to a decreased error.

Consider what happens for different values of λ. When λ is very small, the method is
essentially the same as Gauss-Newton iteration. If λ is large then the normal equation
matrix is approximated by λI, thus the normal equations become λδx = −gx. Therefore,
the LM algorithm moves seamlessly between Gauss-Newton iteration and the gradient
descent approach. The Gauss-Newton procedure will cause rapid convergence in the

3

neighborhood of the solution, and the gradient descent approach will guarantee a decrease
in the cost function when the going is difficult. As the λ becomes larger, the length of the
increment step δx decreases and eventually it will lead to a decrease of the cost function.

3.4 Sparse LM

In the central step of LM algorithm, the solution of the normal equations has complexity
N3 in the number of parameters, and this step is repeated many times. Hence, LM
algorithm is not very suitable for minimizing cost functions w.r.t. large numbers of
parameters. However, for many estimation problems in the computer vision field, the
normal equation matrix has a certain sparse block structure that one may take advantage
of to realize time savings.

For instance, the reconstruction problem in the computer vision in which one has image
correspondences across two or more views and wishes to estimate the camera parameters
of all the cameras and also the 3D positions of all the points. In this case, the set of
parameters may be divided up into two sets: a set of parameters describing the cameras,
and a set of parameters describing the points. More precisely, the parameter vector
x ∈ RM can be partitioned into parameter vectors a and b so that x = (aT ,bT)T . And
the measurement vector y ∈ RN consists of all the image point coordinates. In addition,
taking the covariance matrix for the measurement vector into account, one seeks the
set of parameters that minimize the squared Mahalanobis distance ||ε||2Σx

= εTΣ−1
x ε.

Corresponding to the division of parameters x = (aT ,bT)T , the Jacobian matrix J =
[∂ŷ/∂x] has a block structure of the form J = [A|B], where the submatrices are defined
by

A = [∂ŷ/∂a] (13)

and
B = [∂ŷ/∂b]. (14)

The set of equations Jδx = ε solved as the central step in the LM algorithm has the
form

Jδx = [A|B]

(
δa
δb

)
ε. (15)

Then, the normal equations JTΣ−1
x Jδx = JTΣ−1

x ε to be solved at each step of the LM
algorithm are of the form[

ATΣ−1
x A ATΣ−1

x B
BTΣ−1

x A BTΣ−1
x B

](
δa
δb

)
=

(
ATΣ−1

x ε
BTΣ−1

x ε

)
. (16)

In the LM algorithm, the diagonal blocks of the matrix are augmented by multiplying
their diagonal entries by a factor 1 + λ for the varying parameter λ, which alters the
matrices ATΣ−1

x A and BTΣ−1
x B. The resulting matrices are denoted by (ATΣ−1

x A)∗ and
(BTΣ−1

x B)∗.
For simplicity, (16) can be written in the form[

U∗ W
W T V ∗

](
δa
δb

)
=

(
εA
εB

)
. (17)

To solve these equations, both sides are multiplied on the left by[
I −WV ∗−1

0 I

]
4

resulting in [
U∗ −WV ∗−1W T 0

W T V ∗

](
δa
δb

)
=

(
εA −WV ∗−1εB

εB

)
. (18)

The top half of this set of equations is

(U∗ −WV ∗−1W T)δa = εA −WV ∗−1εB. (19)

And the value of δb can be found by

V ∗δb = εB −W T δa. (20)

4 Implementation

In this section, we utilize the sparse LM algorithm to estimate the transformation
between two successive scans captured by an RGB-D camera. However, not all the scan
data is exploited. We first detect the edge information in the scan [6], then use the edge
points in the ICP process to obtain the camera pose estimation.

4.1 3D Rigid Body Transformation

A 3D rigid body transform T ∈ SE(3) denotes rotation and translation in 3D space
which is defined by

T =

(
R t
0 1

)
with R ∈ SO(3) and t ∈ R3. (21)

During optimization, a minimal representation for the camera pose is required, which
is given by the corresponding element ξ ∈ se(3) of the associated Lie-algebra. Elements
are mapped to SE(3) by the exponential map T = exp(ξ), and it’s inverse is denoted by
ξ = log(T).

4.2 Optimization on Lie-Manifolds

In each iteration of ICP, (22) is minimized w.r.t. ξ.

E2 =
N∑
i=1

[cpi − Tcr(rpi)]T Ωi [cpi − Tcr(rpi)] . (22)

Denote r2
i (ξ) as

r2
i (ξ) = [cpi − Tcr(rpi)]T Ωi [cpi − Tcr(rpi)] . (23)

The Jacobian matrix required in the LM optimization is then computed as

J =
∂E(ξ)

∂ξ
=

N∑
i=1

∂ri(ξ)

∂ξ
= −

N∑
i=1

[cpi − Tcr(rpi)]T Ωi
∂Tcr(

rpi)

∂ξ
(24)

where
∂Tcr(

rpi)

∂ξ
= [I,−Tcr(rpi)∧] (25)

with q∧ represent the skew symmetric matrix of vector q.

5

Figure 1: RMSE of ATE.

Figure 2: RMSE of RPE.

6

4.3 Experimental Results

All the experiments are performed on ubuntu 16.04 LTS, and the programs are written
in C++. The g2o [7] framework is applied to achieve the sparse LM algorithm. The afore-
mentioned frame-to-frame camera pose estimation is run as the RGB-D visual odometry
on part of the Fr1-xyz image sequence of the Freiburg RGB-D benchmark [8]. The root
mean square error (RMSE) of the absolute trajectory error (ATE) and the relative pose
error (RPE) proposed in [8] are adopted as error metric to evaluate the pose estimation
method. The ATE and RPE are shown in Figure 1 and Figure 2, respectively.

References

[1] M. I. A. Lourakis, Sparse non-linear least squares optimization for geometric vision,
ECCV, 2010.

[2] K. S. Arun, T. S. Huang, And S. D. Blostein, Least-squares fitting of two 3-D point
sets, IEEE Transactions On Pattern Analysis And Machine Intelligence, 1987.

[3] B. K. P. Horn, Closed-form solution of absolute orientation using orthonormal ma-
trices, Journal of the Optical Society of America, 1988.

[4] B. K. P. Horn, Closed-form solution of absolute orientation using unit quaternions,
Journal of the Optical Society of America, 1987.

[5] P. J. Besl, and N. D. McKay, A method for registration of 3-D shapes, IEEE Trans-
actions On Patiern Analysis And Machine Intelligence, 1992.

[6] C. Choi, A. J. B. Trevor, and H. I. Christensen, RGB-D edge detection and edge-
based registration, IROS, 2013.

[7] R. Kmmerle, G. Grisetti, H. Strasdat, K. Konolige and W. Burgard, G2o: A general
framework for graph optimization, ICRA, 2011.

[8] J. Sturm, N. Engelhard, F. Endres, W. Burgard and D. Cremers, A benchmark for
the evaluation of RGB-D slam systems, IROS, 2012.

7

