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1 Preface

While presenting the ideas and detailed methods proposed in this paper, I will insert
some comments of mine into the context, which are all identified with blue characters.
(I don’t exactly know whether this could be called a preface, but I know no better
alternatives.) – by SqX.

2 Paper Overview

This paper proposes an RGB-D SLAM system based on consistent plane-model align-
ment. The proposed method models the environment with a global plane model and
integrates frame-to-keyframe and frame-to-plane alignment. Compared with most of the
other plane based SLAM system, this paper makes use of the dense image information
available in keyframes for accurate short-term tracking, while uses a global model to
reduce drift.

The whole system is illustrated in Figure 1. The major contributions of the paper are
as follows.

• An RGB-D SLAM approach is developed which consistently tracks camera motion
through direct image alignment towards a keyframe and a global plane model in an
EM framework.

• Some spatial constraints are obtained between keyframes and global plane model.

• A real-time capable SLAM system is developed.

Figure 1: Schematic pipeline of CPA-SLAM system.
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3 Method Description

3.1 Preliminaries

For the detailed description, the following notations are used.

k Keyframe index;
i Current frame index;
Ω ∈ R2 image domain;
Ωi Disjoint segments of image domain;
v A 3D point;
n Unit normal at a 3D point;
x A 2D pixel;
x = ρ(v) Projection of a 3D point onto the 2D image;
v = ρ−1(x) Back-projection of a 2D pixel into 3D space;
ξji ∈ se(3) Rigid body motion from frame i to j;
t(ξ,v) = g(ξ)v Transforming 3D point v by ξ;
ω(ξ,x) = ρ(t(ξ, ρ−1(x))) Warping pixels between frames;
π = (nT , d)T Plane parameters with n representing the unit nor-

mal and −d being the distance from the plane to the
origin.

3.2 Global Plane Model

The global plane model is defined as a set of planes {πgm} in the world coordinate.
It is augmented incrementally. When a new keyframe is produced, it is segmented into
K regions where Ω0 represents the non-planar region and Ωj is the j-th plane. When
associating the local observations with the global model, a correspondence is found is the
angle between the plane normals is small and their distances to the origin are similar.

Actually I don’t think it’s a very good way to correspond the planes. If the parameters
of plane are used, it must be guaranteed that the camera pose tracking is accurate enough
to make the plane parameters observed in two different frames close enough to achieve
the correct correspondences. Also, the threshold here is hard to choose to guarantee a
good performance in the system implementation.

3.3 Tracking towards Keyframe and Plane Model

The motion estimation from the current frame i to the keyframe k is achieved by
minimizing both photometric error rI and geometric error rG. The two errors are defined
by (1) and (2), respectively.

rI = Ik(ω(ξ,x))− Ii(x) (1)

rG =

{
nTk (g(ξ,vi)− vk) if ω(ξ,xi) ∈ Ω0

nTπjg(ξ,vi) + dj if ω(ξ,xi) ∈ Ωj

(2)

Note that the geometric residual is defined as the point-to-plane distance when the current
pixel xi is warped to the planar region Ωj.

Combining the photometric and geometric error into one variable r = (rI , rG)T , and
the camera motion is calculated by minimizing the following non-linear weighted least
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squares

ξ∗ = arg min
ξ

N∑
n

K∑
k

γnkωnkr
T
nΣ−1

k rn. (3)

The weight ωnk is derived from a Student-t distribution as proposed in [1] and the variable
γn ∈ RK is the labeling that indicates which region the residual belongs to. Note that a
soft labeling γnk ∈ [0, 1] is used to increase robustness.

The idea of soft labeling here is interesting. It describes how likely a point belongs to
a plane rather than whether the point belongs to the plane.

Since the parameters γ, ω and Σ also need to be estimated in addition to the motion
ξ, the optimization of (3) cannot be solved directly.

Suppose that K − 1 planes are visible in the keyframe. Assume that there exists an
indicator zn ∈ BK that tells which segment the pixel comes from. It satisfied znk ∈ {0, 1}
and

∑K
k znk = 1. As a result, the variable zn can be seen as a lattent variable with the

following probability

p(zn) =
K∏
k

ηznk
k , (4)

p(rn|zn) =
K∏
k

pt(rn; 0,Σk, νk)
znk . (5)

The EM algorithm provides a probabilistic formalism to estimate the parameters of
posterior probability functions with latent variables. In EM, the conditional expectation
of the log joint probability is optimized, which is conditioned on the posterior probability
of the latent variable. In this case, the log joint probability can be computed as

log p(r, z) = log
N∏
n

K∏
k

(ηkpt(rn; 0,Σk, νk))
znk

=
N∑
n

K∑
k

znk log (ηkpt(rn; 0,Σk, νk)) .

(6)

Then the conditional expectation is computed as

Ep(z|r) [log p(r, z)] =
N∑
n

K∑
k

znkγnk log (ηkpt(rn; 0,Σk, νk)) , (7)

where
γnk = Ep(z|r)[znk] = p(znk|rn). (8)

So in the E-step of the EM process, the soft label γnk is calculated holding all the param-
eters from the last time step. In the M-step, the motion estimation and other unknown
parameters is solved by maximizing (7). The robustness of soft labeling is illustrated in
Figure 2.

It is said in the paper that the iterative EM steps are guides by the projective data
association [2], which propagates the keyframe labeling to the current frame. Essentially,
it’s similar to the ICP process. Instead of determining the point pair as correspondence,
they associate points with plane segments if possible. In the EM process, the soft labeling
is treated as a hidden variable, and estimated in each iteration together with the camera
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Figure 2: Comparison between the hard labeling and EM soft labeling to associate planar
points in the current frame. The soft labeling is more robust against the false segmenta-
tion in the keyframe, e.g., the keyboard and the book are assigned 0 probability to being
on the plane of the table.

motion. It’s kind of like the data association part in ICP process. Since the correspon-
dences between two scans are unknown, so they need to be estimated before calculating
the camera motion, and re-estimated in the iterative process.

3.4 Keyframe Selection and Loop Closure Detection

Keyframes are selected by examining the uncertainty of motion estimation [1]. The
Hessian matrix H can be approximated given the normal equation in the optimization
process. The covariance of the estimated motion is approximated by the inverse of H,
i.e., Σξ ≈ H−1. Assuming ξ ∼ N (ξ∗,Σξ), the differential entropy of a multivariate normal
distribution is defined as

h(ξ) = 3(1 + ln(2π)) + 0.5 ln(|Σξ|). (9)

The entropy ratio for every frame track towards the keyframe is

α = h(ξk+j)/h(ξk+1). (10)

Whenever α drops below a pre-defined threshold, the (k + j)-th frame is selected as
the keyframe. And whenever a keyframe is produced, the loop closure is detected by
comparing the current keyframe to previous keyframes via a spatial search and the direct
image alignment is used to register two frames.

The loop closure detection hasn’t utilized any information of the global plane model.
I think the global plane model should be exploited in the loop closure detection, which
might improve the work in this paper.
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Figure 3: RMSE of absolute trajectory error (no final optimization) of tracking methods:
without plane model, plane model with hard labeling and plane model with soft EM
labeling (bold marks the best).

Figure 4: Comparison of CPA-SLAM to other SLAM algorithms that use planes. The
RMSE of the absolute trajectory error (m) is shown and the results of other methods are
cited from the original papers.

3.5 Joint Pose and Plane Graph Optimization

The keyframe poses and the model planes are together optimized in a graph

Θ∗ = arg min
Θ

∑
i,j

eTijHijeij, (11)

where Θ = (ξ1, ξ2, ..., ξN , π
g
1 , π

g
2 , ..., π

g
M) is the parameters to be optimized. The graph

contains two types of nodes: keyframe poses and global planes, and two types of edges:
between two poses and between a plane and a pose.

For an edge connecting two poses ξi and ξj with the measured constraint ξij, the edge
error is defined as

eij = g−1(g(ξ−1
i )g(ξj)g(ξij)). (12)

And the error for plane-keyframe edges is defined as

eij = q(πgj )− q(t(ξi, πij)). (13)

4 Experimental Evaluation

Some experimental results are shown in Figure 3, Figure 4 and Figure 5. The EM
tracking is implemented with CUDA and run on an NVidia GTX780 GPU.
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Figure 5: The RMSE of the absolute trajectory error (m) of CPA-SLAM approach in
comparison to state-of-the-art algorithms (bold marks best).

Figure 6: Fused model by proposed SLAM methods. The trajectories with and without
graph optimization are shown in blue and red, and the constraints between keyframe
poses and planes are shown in cyan.
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