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Basic Concepts

SLAM (Simultaneous Localization and Mapping) [1]

• Estimation of the robot state (equipped with sensors).
• Pose (position and orientation).
• Velocity.
• Calibration parameters.

• Construction of a model (the map) of the environment.



Basic Concepts
Map representation (3D) [1]

• Different kinds of map representations.
• Landmark-based (feature-based) sparse representations.

• Represent the scene as a set of sparse landmarks.
• Each landmark corresponds to discriminative features.
• Point features (most widely used).

• Raw dense representations.
• A large unstructured set of points or polygons.
• surfels used in ElasticFusion.
• (in monocular SLAM) Direct methods.

• Boundary and spatial-partitioning dense representations.
• Explicitly represent surfaces (or boundaries) and volumes.
• Simple boundary representation: plane-based models.
• Volume representation: truncated signed-distance function

(TSDF).
• TSDF used in KinectFusion.

• High-level object-based representations.



Basic Concepts

Map representation (3D) [1]

• Comparison between sparse and dense map representations.
• Feature-based approaches:

• High speed.
• Reliance on feature type, detection and matching thresholds.
• Problems of incorrect correspondences.

• Dense, direct methods:
• Exploit all the information in the image.
• Outperform feature-based methods in scenes with poor

texture and motion blur.
• require high computing power (GPUs) for real time

performance.



Basic Concepts

Figure: Left: feature-based map of a room produced by ORB-SLAM. Right: dense
map of a desktop produced by DTAM.



Some Challenges in SLAM

Some Challenges in SLAM

• Robust performance

• Scalability

• High level understanding of the environment



Some Challenges in SLAM

• Robust performance
• Data association

• Perceptual aliasing
• Dynamics in the environment

• Sensor or actuator degradation



Some Challenges in SLAM

Figure: Perceptual aliasing.

Figure: Dynamics in the environment.



Some Challenges in SLAM
• Scalability

Figure: In some applications, robots need to operate for an extended period of time
over large areas.



Some Challenges in SLAM

• Scalability
• Two ways to reduce complexity of graph optimization

• Sparsification methods
• Multi-robot methods



Some Challenges in SLAM

• High level understanding of the environment
• Semantic SLAM
• Task related
• Place/Object classification
• Properties/Functions



State-of-the-art V-SLAM Systems

Sensor Map SLAM (visual odometry) published GPU required
monocular sparse ORB-SLAM [5] 2015, TRO No

SVO [7, 8] 2014, ICRA No (MAV)
semi-dense LSD-SLAM [6] 2014, ECCV No
dense DTAM [9] 2011, ICCV Yes

RGB-D sparse RGBD-SLAM [10] 2014, TRO No
dense DVO [11, 12] 2013, IROS No

KinectFusion [13] 2011, ISMAR Yes
ElasticFusion [14, 15] 2015, RSS Yes



State-of-the-art V-SLAM Systems

SLAM (visual odometry) developers
ORB-SLAM [5] Instituto de Investigacion en Ingenieria de Aragon

Universidad de Zaragoza, Spain
SVO [7, 8] Robotics and Perception Group

University of Zurich, Switzerland
LSD-SLAM [6] Computer Vision Group, Department of Computer Science

Technical University Munich, Germany
DTAM [9] Robot Vision Research Group, Department of Computing

Imperial College London, UK
RGBD-SLAM [10] Department of Computer Science

University of Freiburg, Germany
DVO [11, 12] Computer Vision Group, Department of Computer Science

Technical University of Munich, Germany
KinectFusion [13] Microsoft
ElasticFusion [14, 15] Dyson Robotics Laboratory, Department of Computing

Imperial College London, UK



Widely Used Techniques in V-SLAM

Widely Used Techniques in V-SLAM

• Tracking

• Mapping

• Loop Closing

• Map Optimizing



Widely Used Techniques in V-SLAM

Tracking

• Feature-based method

• Direct method



Widely Used Techniques in V-SLAM

Tracking

• Feature-based method (ORB-SLAM)
• Current camera pose prediction via a motion model.
• Data association - achieved by feature matching (ORB

features).
• Bundle Adjustment.



Widely Used Techniques in V-SLAM
Tracking

• Direct method
• Minimize the projective photometric error.

Tk,k−1 = argmax
T

∫
δ I(T,u)du

• where

δ I(T,u) = Ik

(
π

(
T ·π−1(u,du)

))
− Ik−1(u)



Widely Used Techniques in V-SLAM

Tracking

• Direct method
• DTAM



Widely Used Techniques in V-SLAM

Tracking

• Direct method
• DTAM

Figure: Plots for the pixel photometric functions.



Widely Used Techniques in V-SLAM
Mapping (Monocular SLAM)

• Depth filter (SVO)
• Bayesian framework.
• Initialized with a high uncertainty.
• Depth measurement is modeled with a Gaussian + Uniform

mixture model distribution.
• Recursive Bayesian update.



Widely Used Techniques in V-SLAM

Loop closing

• Geometric-based method
• Usually for small-scale loop closure

detection.

• Appearance-based method
• Usually for large-scale loop closure

detection.
• Matching between Keyframes

(RGBD-SLAM)
• Bag of Words [16] (ORB-SLAM)
• FAB-MAP [17] (LSD-SLAM)



Widely Used Techniques in V-SLAM

Map Optimizing

• Pose graph optimization (RGBD-SLAM, LSD-SLAM)

• Fusion based map update (KinectFusion, ElasticFusion)



Fusion based Dense SLAM

Fusion based Dense SLAM

• RGB-D sensor.

• Map-centric approach.

• Fuse the data from a moving sensor into a single global
surface model, permitting accurate viewpoint-invariant
localization as well as offering the potential for detailed
scene understanding.

• Two examples
• KinectFusion
• ElasticFusion



Fusion based Dense SLAM

KinectFusion

• Preliminaries.
• 6DOF camera pose estimation at frame k

Tg,k =

[
Rg,k tg,k

0T 1

]
∈ SE3.

• pg = Tg,kpk.
• Camera calibration matrix K.
• q = π(p) perspective projection,

where p ∈ R3 = (x,y,z)T , q ∈ R2 = (x/z,y/z)T .
• Homogeneous vector u̇ := (uT |1)T .
• Raw depth map Rk(u) ∈ R, where u ∈U ⊂ R2



Fusion based Dense SLAM

KinectFusion

Figure: Overall system workflow of KinectFusion.



Fusion based Dense SLAM
KinectFusion

• Dense map representation.
• Truncated signed-distance function (TSDF). [18]

• Global TSDF containing a fusion of frames 1, ...,k

Sk(p) 7→ [Fk(p),Wk(p)],

where Fk(p) is the truncated signed distance value, Wk(p) is
the weight.

• A discretization of TSDF is stored in GPU.

Figure: Unweighted signed distance functions in 3D.



Fusion based Dense SLAM

KinectFusion

• Dense map representation.
• Truncated signed-distance function (TSDF).

• TSDF created from data of k-th frame.
• For a point p in global frame, and a raw depth map Rk with a

known Tg,k

FRk(p) = ψ(λ−1‖tg,k−p‖2−Rk(x)),

λ = ‖K−1ẋ‖2,

x =
⌊

π(KT−1
g,kp)

⌋
,

ψ(η) =


min(1,

η

µ
)sgn(η) iff η ≥−µ

null otherwise
.



Fusion based Dense SLAM

KinectFusion

• Dense map representation.
• Truncated signed-distance function (TSDF).

• De-noise the global TSDF from multiple noisy TSDF
measurements.

• Update rules

Fk(p) =
Wk−1(p)Fk−1(p)+WRk (p)FRk (p)

Wk−1(p)+WRk (p)

Wk(p) = Fk−1(p)+FRk (p)



Fusion based Dense SLAM

KinectFusion

• Surface prediction.
• Surface prediction from ray casting the TSDF. [19]

• Each pixel’s corresponding ray, Tg,kK−1u̇.
• March starting from minimum depth and stopping when a

zero crossing is found.

• Rg,kN̂k = N̂g
k(u) = v[OF(p)], OF(p) =

[
∂F
∂x ,

∂F
∂y ,

∂F
∂ z

]T



Fusion based Dense SLAM

KinectFusion

• Sensor pose estimation.
• Two assumptions:

• Small motion from one frame to the next (due to high
tracking frame-rate).

• GPU enables a fully parallelized processing pipeline.

• Align a live surface measurement (Vk,Nk) against the
model prediction from the previous frame (V̂k, N̂k).

• Projective data association [20] and point-plane metric [21].
• Global energy to minimize,

E(Tg,k) = ∑
u∈U

∥∥(Tg,kV̇k(u)− V̂g
k−1(û))TN̂g

k−1(û)
∥∥

2 .



Fusion based Dense SLAM

KinectFusion

Figure: Circular motion experiment.



Fusion based Dense SLAM

ElasticFusion

• Preliminaries.
• A pixel coordinate u ∈ Ω⊂ N2.
• Depth map D, d : Ω→ R.
• Color image C, c : Ω→ N3.
• 3D back-projection p(u,D) = K−1ud(u).
• Perspective projection u = π(Kp).
• Intensity image I(u,C) = c(u)T i, i = [0.114,0.299,0.587]T .
• Global pose of camera

Pt =

[
Rt bftt

0T 1

]
∈ SE3



Fusion based Dense SLAM

ElasticFusion

• Map representation.
• An unordered list of surfels M.
• Each surfel Ms:

• position p ∈ R3

• normal n ∈ R3

• color c ∈ N3

• weight ω ∈ R
• radius r ∈ R (r = d

√
2

f |nz| )
• initialized timestamp t0
• last updated timestamp t



Fusion based Dense SLAM
ElasticFusion

• Pose estimation.

Etrack = Eicp + ωrgbErgb

• Geometric term:

Eicp = ∑
k

((
vk− exp(ξ̂ )Tvk

t

)
·nk
)2

.

• Photometric term:

Ergb = ∑
u∈Ω

(
I(u,Cl

t)− I
(

π(Kexp(ξ̂ )Tp(u,Dl
t)), Ĉa

t−1

))2
,

where Dl
t and Cl

t are the current depth and color images,
D̂a

t−1 and Ĉa
t−1 are the predicted active model from the last

frame.



Fusion based Dense SLAM

ElasticFusion



Fusion based Dense SLAM

ElasticFusion

• Local loop closure.
• Divide M into two disjoint sets Θ (active set) and Ψ (inactive

set) according to the timestamp Ms
t .

• Align Θ and Ψ.

• Global loop closure. [22]
• Randomized fern encoding.



Fusion based Dense SLAM

ElasticFusion

• Deformation graph.
• Each node Gn:

• timestamp Gn
t0

• position Gn
g

• set of neighboring nodes N (Gn)

• affine transformation Gn
R and Gn

t



Fusion based Dense SLAM

ElasticFusion

• Graph construction.
• Sample from M s.t. |G| � |M|.
• G is ordered over n on Gn

t0 s.t. Gn
t0 ≥ Gn−1

t0 , ...,G0
t0 .

• Define N (Gn) = Gn±1, ...,Gn±k/2.



Fusion based Dense SLAM

ElasticFusion

• Deformation graph.

• Deformed position of a surfel.

M̂s
p = ∑

n∈I(Ms,G)

ω
n(Ms)

[
Gn

R(Ms
p−Gn

g) + Gn
g + Gn

t
]

M̂s
n = ∑

n∈I(Ms,G)

ω
n(Ms)Gn

R
−1T

Ms
n

where I(Ms,G) is a set of influencing nodes in graph which
Ms identifies. (Algorithm 1)



Fusion based Dense SLAM
ElasticFusion



Fusion based Dense SLAM

ElasticFusion

Figure: ElasticFusion experiment.
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