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Exploring High-Level Plane Primitives, ACCV, 2013.

Contributions

• a robust pair-wise matching algorithm across frames via
matching of both extracted planes and RGB image visual
features (SIFT).

• incorporate plane correspondences (in addition to visual
feature correspondence) to the Bundle Adjustment (BA).

Figure: The flow chart.



Exploring High-Level Plane Primitives, ACCV, 2013.

Planar Surface Extraction from Depth Map

• Voting algorithm (Hough transform).

• Finally, we assign each pixel to one of the detected planes,
or as a non-plane if the distance to all planes is too large.

• the convex hull {vi}K
i=1 of a plane segment is found to

indicate its boundary.



Exploring High-Level Plane Primitives, ACCV, 2013.

Robust Pair-Wise Matching

• initial feature match set is computed by checking the
similarity of SIFT descriptors.

• Plane matching hypothesis

• Run RANSAC on one plane matching hypothesis and the
feature match set.



Exploring High-Level Plane Primitives, ACCV, 2013.

Robust Pair-Wise Matching

• Plane matching hypothesis
• matching criterion: relative plane angle and plane

appearance similarity.
• plane appearance similarity

• ∑i min
(
hHS

1 (i),hHS
2 (i)

)
+ ∑i min

(
hI

1(i),hI
2(i)
)

• a joint histogram of hue-saturation hHS - color information.
• an intensity histogram hI - texture information.



Exploring High-Level Plane Primitives, ACCV, 2013.
Robust Pair-Wise Matching

• Plane matching hypothesis
• a plane matching hypothesis - a subset of planes in one

frame and the matching planes in the other frame.
• To eliminate some hypotheses, constrain the rotation angle

within a threshold, given the practical assumption that two
nearby frames should not rotate too much.



Exploring High-Level Plane Primitives, ACCV, 2013.
Robust Pair-Wise Matching

• Run RANSAC on one plane matching hypothesis and the
feature match set

• Randomly Sample Matched Pairs.
• 3 planes
• 3 point features
• 2 planes with 1 point feature
• 2 point features with 1 plane

• Calculating the transformation from pairs of matches.
• consider n pairs of matched planes S = {< Pl

i,P
r
j >}

• and m pairs of matched features T = {< f l
i , f

r
j >}

• a transformation < R,T > is estimated s.t. the overall
distance between matched items should be minimized

min ∑
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Exploring High-Level Plane Primitives, ACCV, 2013.
Robust Pair-Wise Matching

• Run RANSAC on one plane matching hypothesis and the
feature match set

• Distance between plane segments
• The closeness on planes parameters shown in (a) does not

equal to the closeness of plane segments shown in (b).
• The solid line segments denote the plane segments, and O

is the origin of the world coordinate.



Exploring High-Level Plane Primitives, ACCV, 2013.

Robust Pair-Wise Matching

• Run RANSAC on one plane matching hypothesis and the
feature match set

• Distance between plane segments
• measure the distances from the boundary points (convex

hull) of one plane segment to its matched plane.
• Instead of measuring Euclidean distance between plane

parameters.
• distance between plane segments < Pl

i,P
r
j > is defined as

D2
pln =
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Exploring High-Level Plane Primitives, ACCV, 2013.

Robust Pair-Wise Matching

• Run RANSAC on one plane matching hypothesis and the
feature match set

• For each transformation candidate, count how many other
matching pairs fit this transformation.

• point features - Euclidean distance.
• plane segments - Dpln and overlap in the image space.



Exploring High-Level Plane Primitives, ACCV, 2013.

Extended Bundle Adjustment of Feature Points and Planes

• feature track - a set of linked features {f i
k}i∈Ck , corresponding to

the same 3D point pk in the world coordinate system.

• plane track - a set of linked planes {Pi
j}i∈Dj , corresponding to the

same world plane Qj.

• Problem statement
• M plane tracks

{
{Pi

j}i∈Dj

}M

j=1
and K feature tracks

{
{f i

k}i∈Ck

}K
k=1.

• unknown - camera poses {Ri,Ti}N
i=1, plane parameters {nj,dj}M

j=1
and point locations {pk}K

k=1.



Exploring High-Level Plane Primitives, ACCV, 2013.
Extended Bundle Adjustment of Feature Points and Planes

• Cost Function

c
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∑
i,j|i∈Dj

ci
jD

2
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j
)

+
1− c
Npt
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D2
pt
(
Q(Ri,Ti,pk), f i

k
)

• Plane Track Refinement
• some large planes tend to have several disjoint plane

tracks.
• merge planes in the world space that are close enough to

each other.
• delete a detected plane from its track if its distance to the

corresponding world plane is beyond a threshold.
• delete the whole track if more than half the planes do not fit

the corresponding world plane.



Exploring High-Level Plane Primitives, ACCV, 2013.

Experiments



Exploring High-Level Plane Primitives, ACCV, 2013.

Experiments

• Quantitative Measurement of Errors
• the relative angles between some planes in the room, such

as walls, ceilings and floors, are known (zero angle or right
angle).

• these angles serve as the ground truth for the measured
angles between the world planes.



Exploring High-Level Plane Primitives, ACCV, 2013.

Experiments

• Running Times (PC with 3.0 CPU Hz)
• plane extraction - 2.5˜3s
• SIFT feature extraction - 1.5s
• whole BA procedure - 5˜20min on a dataset



Dense Planar SLAM, ISMAR, 2014.
System Overview

• densely map the environment with surfels [Keller2013]

• label each surfel in the 3D map either with one of the plane
labels, or no label if it is not part of any plane.

• Associated planes are converted into the same world reference
frame and refined with a running average.

• Overlapping modelled planes with similar properties are merged
together to incrementally extend areas.



Dense Planar SLAM, ISMAR, 2014.

Mapping with Planes

• map representation - a set of k unstructured surfels P̄k

• position v̄k ∈ R3

• normal n̄k ∈ R3

• radius r̄k ∈ R
• confidence c̄k ∈ R
• timestamp t̄k ∈ N
• (additional) plane ID ōk = i, i = 1, ...,p ∈ N

• associate modeled surfels with measurements, producing
data-associated pairs
asurfels = {(i, j)}; i = 1, ...,k; j = 1, ...,w×h



Dense Planar SLAM, ISMAR, 2014.
Mapping with Planes

• Planar Region Detection
• connected component labelling [Dellencourt1992]
• label map L (u) = i; i = 1, ...,q ∈ N

• Data-Association with Planes
• (A) a modelled plane and a measured plane intersect -

aplane = {(i, j)}; i = 1, ...,p; j = 1, ...,q
• (B) modelled surfels lack a planar measurement.
• (C,D) modelled planar region surfels lack planar measurement.
• (E,F) unmodelled (measured) planar regions.
• (G) invalid data.



Dense Planar SLAM, ISMAR, 2014.

Mapping with Planes

• Planar Region Refinement and Merging
• a modelled plane π̄i is refined with the associated measured plane

πi using a running average.

ni←
ωni + Rnj

ω + 1
,di←

ωdi + (−Rnj · t + dj)

ω + 1
,ω ← ω + 1



Dense Planar SLAM, ISMAR, 2014.

Map Compression

• compress planar regions whenever they become nonvisible (i.e.
outside the view frustum).

• if the planar region does not intersect all of the 6 planes
enclosing the frustum.



Dense Planar SLAM, ISMAR, 2014.

Map Compression

• Compression
• perform an additional PCA step.
• estimate the major x-y axis of the extended plane.
• representing the plane as a binary image

• virtual image of dimensions wvi×hvi

• compute the compressed index of a surfel
• vc = v− v̂
• vp = (xaxis ·vc,yaxis ·vc)T

• vvi = round(vp×1000)

• vo = vvi + (wvi,hvi)
T/2

• index = vo(y)×wvi + vo(x)



Dense Planar SLAM, ISMAR, 2014.

Results

• Synthetic scenes



Dense Planar SLAM, ISMAR, 2014.
Results

• Real-world scenes

Figure: Real scene reconstruction of an apartment (top) and desktop (bottom). (left) Displaying both planar and
non-planar regions surfels. (right) In clockwise order: Colour output, Normal Map, Non-Planar region surfels only,
Planar region surfels only.



SLAM with Infinite Planes, ICRA, 2015.

Contributions

• usually presented by the overparametrized representation of an
infinite plane.

• a commonly used minimal representation using spherical
coordinates for the plane normal suffers from singularities.

• introduce a minimal representation for the homogeneous
parametrization of infinite planes suitable for least-squares
estimation with Gauss-Newton methods and related incremental
solvers.



SLAM with Infinite Planes, ICRA, 2015.

Mapping With Infinite Planes

• State and Plane Representation
• sensor pose x = (t,q) ∈ R3×S3

• transformation matrix

Tgx =

(
R(q) t
0T 1

)
∈ R4×4

• a point in projective space is represented by homogeneous
coordinates p = (p1,p2,p3,p4)T ∈ P3 where its corresponding
Euclidean coordinates for p4 6= 0 are (p1/p4,p2/p4,p3/p4)T ∈ R3

• transform from local to global frame

pg = Tgxpx



SLAM with Infinite Planes, ICRA, 2015.

Mapping With Infinite Planes

• State and Plane Representation
• plane represented in projective space [Hartley2003]

π = (π1,π2,π3,π4)T ∈ P3

• a point p ∈ P3 lies on the plane iff

π
T p = 0

• transform from local to global frame

πg = T−T
gx πx



SLAM with Infinite Planes, ICRA, 2015.

Mapping With Infinite Planes

• Minimal Representation
• overparametrization - information matrix becomes rank-deficient

and cannot be inverted as needed for Gauss-Newton type
optimization.

• only 3DoF in plane parameters - its orientation α,β and its
orthogonal distance d from the origin.

• if represented by (α,β ,d), there are singularities.



SLAM with Infinite Planes, ICRA, 2015.

Mapping With Infinite Planes

• Minimal Representation
• find a minimal representation by restricting the ambiguity in the

homogeneous representation.
• normalize the vector π to lie on the unit sphere of R4 as

π ′ = π/||π|| ∈ S3

• then use the element ω of Lie algebra su(2) of S3 as the minimal
representation.

• π is updated by an increment ω using the exponential map

π
′ = exp(ω)π

exp(ω) =

 1
2 sinc

(
1
2 ||ω||

)
ω

cos
(

1
2 ||ω||

) 



SLAM with Infinite Planes, ICRA, 2015.

Mapping With Infinite Planes

• SLAM Formulation
• estimate the sensor poses x0, ...xt and

planes π1, ...,πm given the plane
measurements.

• use a factor graph as a graphical
model [Kaess2012]

G = (F,Θ,E)

• factor nodes fi ∈ F - measurements
• variable nodes θj ∈Θ - poses and

planes
• edge eij ∈ E - connect factor and

variable nodes



SLAM with Infinite Planes, ICRA, 2015.

Mapping With Infinite Planes

• SLAM Formulation
• find variable assignment Θ∗

Θ∗ = argmax
Θ

∏
i

fi(Θi)

• for Gaussian measurement models

fi(Θi) ∝ exp
(
−1

2
||hi(Θi)− zi||2Σi

)



SLAM with Infinite Planes, ICRA, 2015.

Mapping With Infinite Planes

• Plane Measurement Model
• plane measurement

πx = T−T
gx π⊕v,v∼ N(0,Σ)

p(x̂, π̂|π̃x) =
1√

(2π)3|Σ|
exp
(
−1

2
||h(Tgx̂, π̂)	 π̃x||2Σ

)
• cost function

cxπ (x̂, π̂) = ||h(Tgx̂, π̂)	 π̃x||2Σ



SLAM with Infinite Planes, ICRA, 2015.

Mapping With Infinite Planes

• Relative Formulation



SLAM with Infinite Planes, ICRA, 2015.

Evaluation

•



SLAM with Infinite Planes, ICRA, 2015.

Experimental Results

• ASUS Xtion Pro Live sensor at 640×480 resolution.

• laptop computer with i7-3920XM 2.9GHz CPU. No GPU is used.

• multi-threaded, with separate threads for plane detection, graph
optimization, and visualization.

• runs at 15 frames per second.



SLAM with Infinite Planes, ICRA, 2015.
Experimental Results
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