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PERCEPTION-DRIVEN NAVIGATION

I collaborated with Bluefin Robotics on an Office of Naval
Research sponsored project for autonomous hull
inspection.



PERCEPTION-DRIVEN NAVIGATION

(Revisiting candidate waypoints for loop-closure
versus continuing exploration for area coverage.)
While the normal SLAM process passively
localizes itself and builds a map(iSAM:
Incremental smoothing and mapping, TRO, 2008),
PDN represents an active approach to SLAM:

I quantifying the scene’s visual saliency,
I clustering salient keyframes into a set of

candidate revisit waypoints,
I planning point-to-point paths for candidate

revisit waypoints,
I computing rewards for revisiting candidate

waypoints versus exploring actions,
I choosing the action that provides maximal

reward.



PERCEPTION-DRIVEN NAVIGATION

Visual Saliency
two visual saliency metrics 1

I local saliency SL

I global saliency SG

1Kim A and Eustice RM (2013b) Real-time visual SLAM for autonomous underwater
hull inspection using visual saliency. IEEE Transactions on Robotics 29(3): 719733.





PERCEPTION-DRIVEN NAVIGATION

Waypoint generation

I threshold keyframes based upon their local saliency.

I an online clustering algorithm, Density-Based Spatial Clustering
of Applications with Noise (DBSCAN), groups locally salient
nodes forming clusters. 2

I within each cluster, select a representative waypoint node by
considering both its visual uniqueness (i.e. high global saliency
level) and usefulness for loop-closure (i.e. lowest pose
uncertainty).

2Ester M, Kriegel H, Sander J and Xu X (1996) A density-based algorithm
for discovering clusters in large spatial databases with noise. In: International
conference on knowledge discovery and data mining, pp. 226-231.



PERCEPTION-DRIVEN NAVIGATION

Path generation

I compute a shortest path from its current pose to each waypoint.

I use the global A* algorithm with the heuristic function weighted
by local saliency:

d(xi, xk) = w(Sk
L) ·

√
(xi − xk)2 + (yi − yk)2 + (zi − zk)2 (1)

w(Sk
L) = 2− Sk

L, SL ∈ [0, 1] (2)



PERCEPTION-DRIVEN NAVIGATION

Reward for a path
I Robot uncertainty term U k

robot

I PDN’s expected information matrix (adding a set of odometry
constraints and a set of expected camera measurements in the
form of delta information to the current information matrix)

Λpdn = Λ0 + Λodo + Λcam

I expected delta information from odometry measurements

Λodo =

p−1∑
i=0

HT
odoi+1,i ·Q

−1
i+1,i ·Hodoi+1,i +

1∑
i=p

HT
odoi−1,i ·Q

−1
i−1,i ·Hodoi−1,i

I expected delta information from camera measurements

Λcam =

p−1∑
i=0

∑
c∈Li

PL ·HT
camc,i R

−1Hcamc,i +
1∑

i=p

∑
c∈Li

PL ·HT
camc,i R

−1Hcamc,i





PERCEPTION-DRIVEN NAVIGATION

Reward for a path

I Saliency-based measurement probability

PL = PL(l = 1; SLc , SLt ) ∼ Bernoulli

(to model the probability of successful pairwise image
registration)





PERCEPTION-DRIVEN NAVIGATION

Reward for a path

I terminating covariance for exploration (propagating forward the
current SLAM pose covariance by one step)

Σexp = Σr+1,r+1 = Hodor+1,r ΣrrHT
odor+1,r

xr+1 = xr ⊕ xr−1,r

I penalty term for robot uncertainty

U k=0
robot =

 0 if |Σexp|
|Σtarget| < 1

|Σexp|
1
6

|Σtarget|
1
6

otherwise

U k>0
robot =

|Σk
nn|

1
6

|Σtarget|
1
6
, k = 1, · · · ,Nwp



PERCEPTION-DRIVEN NAVIGATION

Reward for a path
I Area coverage term Ak

map

Ak
map =

Ato cover

Atarget
=
Atarget −Acovered +Ak

redundant

Atarget

I Combined PDN reward function

k∗ = arg max
k
Rk

Rk = −Ck

Ck = α · U k
robot + (1− α) · Ak

map

where k ∈ {0, 1, 2, · · · ,Nwp} and k = 0 corresponds to the exploration
action.



PERCEPTION-DRIVEN NAVIGATION

Experiments
PDN is compared against two typical survey patterns:

I open-loop survey (OPL) - follows a nominal boustrophedon
area-coverage exploration policy without any revisiting.

I deterministic revisit (DET) - does the same but with additional
deterministic revisit actions to achieve loop-closures.



PDN with synthetic saliency map (α = 1)



Effect of α in PDN



PDN with hybrid simulation.



PDN with real-world evaluation



Information gain

I 1. Appearance-based Active, Monocular, Dense
Reconstruction for Micro Aerial Vehicles, RSS, 2014.

I authors: Christian Forster, Matia Pizzoli, and Davide
Scaramuzza (Robotics and Perception Group, University of
Zurich, Switzerland)



Appearance-based Active, Monocular, Dense
Reconstruction

Measurement uncertainty
I compute the depth measurement uncertainty τk related to a camera

motion Tr,k, starting from estimating the photometric disparity
uncertainty σp,k

I the probability of a correct match in the neighbourhood of a pixel

Σ = 2σ2
i (JJT )−1

I σ2
i is the variance of the image noise and J =

∑
P ( ∂I

∂x ,
∂I
∂y ) is the sum of

the image gradients over a patch P.
I θ is the angle formed by the epipolar line (generated from Tr,k) and the

image x axis.
Σ′ = (RT Σ−1R)−1

R =

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

]
I The disparity error along the epipolar line follows the conditional

distribution p(x|y = 0) (Gaussian) and its variance is

σ2
p = Σ′xx − Σ′xyΣ′

−1
yy Σ′yx



Appearance-based Active, Monocular, Dense
Reconstruction

Measurement uncertainty

transform the measurement uncertainty σ2
p

in the image to the depth uncertainty τ 2
k

a = d̂ · f− t

α = arccos
(
− f · t
‖t‖

)
β = arccos

(
− a · t
‖a‖ · ‖t‖

)



Appearance-based Active, Monocular, Dense
Reconstruction

Measurement uncertainty
The angle spanning σp pixels can be
added to β in order to compute γ+

β+ = β + 2 tan−1
(
σp

2f

)
γ+ = π − α− β+

d+ = ‖t‖ sinβ+

sin γ+

The measurement uncertainty is computed
as

τ 2
k =

(
d+ − d̂

)2



Appearance-based Active, Monocular, Dense
Reconstruction

The Information Gain of a Measurement
I describe the uncertainty in the depth map estimate at time k with the

entropy Hk

Hk =
1
2

∑
u∈Ω

ln
(

2πe σ2
u,k

)
I define the information gain

Ik,k+1 = Hk −Hk+1



Appearance-based Active, Monocular, Dense
Reconstruction

Solution Strategies
I Formulation: given the current pose relative to the reference view Tr,k

and the proposed method to measure the information gain of a
measurement at the next pose Ik,k+1 = Ik,k+1(Tk,k+1), which next pose
Tr,k+1 ∈ Ak should be selected?

I Define action space at time k

Ak =
{

T |
∥∥∥T−1

r,k · T
∥∥∥

2
= 4t ∧ T ∈ Z

}
I five different control strategies for the active depth-map estimation

problem:
I 1. Random walk control
I 2. Circular heuristic control
I 3. Greedy control Tr,k+1 = arg maxT∈Ak

I∗k,k+1(T)
I 4. Next-best-view control Tr,k+1 = arg maxT∈ZI∗k,k+1(T)



Appearance-based Active, Monocular, Dense
Reconstruction

Solution Strategies

I five different control strategies for the active depth-map estimation
problem:

I 5. Receding-horizon control: assume that {Tr,k+1, · · · ,Tr,k+N} can be
parameterized by φk such that Tr,k+i ∈ Ak+i−1

φk = arg max
φ

k+N∑
i=k

I∗i,i+1(φ)

I∗k,k+N = Hk −H∗k+N

(
σ∗2

k+N

)
1

σ∗2
k+N

=
1
σ2

k
+

1
τ∗2

k+1(φk)
+ · · ·+

1
τ∗2

k+N(φk)

(make the assumption that the next measurements do not provide any new
evidence, meaning that the prediction coincides with the measurement
and thus, the mean of the estimate does not change.)



Appearance-based Active, Monocular, Dense
Reconstruction

Solution Strategies

I P1 is set fixed to the current position of the camera.
I P2 has one degree of freedom (P2y) along the current direction of motion

of the MAV.
I P3 has two degrees of freedom in the horizontal plane Z.
I In total the trajectory parametrization has three DoF φ = {P2y,P3x,P3y}
I constraint: φ must remain in the range ±2N∆t









Information gain

I 2. Information-Theoretic Planning with Trajectory
Optimization for Dense 3D Mapping, RSS, 2015.

I authors: Benjamin Charrow et al. (University of
Pennsylvania, USA)



Information-Theoretic Planning with Trajectory
Optimization

Cauchy-Schwarz Quadratic Mutual Information (CSQMI) is
used to define the information gain. 3

3B. Charrow, S. Liu, V. Kumar, and N. Michael. Information-Theoretic Mapping
using Cauchy-Schwarz Quadratic Mutual Information. Technical report, University of
Pennsylvania, 2014.



Information-Theoretic Planning with Trajectory
Optimization

Information-Theoretic Objective for Active Control

I Occupancy grids are used to represent 3D maps.
I Cauchy-Schwarz Quadratic Mutual Information (CSQMI)

ICS[m; zτ ] = − log

(∑∫
p(m, zτ )p(m)p(zτ )dzτ

)2∑∫
p2(m, zτ )dzτ

∑∫
p2(m)p2(zτ )dzτ

where the sums are over all possible maps, and the integrals are over
all possible measurements the robot can receive.



Information-Theoretic Planning with Trajectory
Optimization

I Global planning
I find “frontier voxels” of the map, and greedily cluster multiple

nearby frontier voxels.
I create global paths by finding shortest paths to destinations that

can view a cluster (Dijkstra’s algorithm).

I Local motion primitives (two types)
I generate dynamically feasible trajectories using a fixed library of

motion primitives.
I generate trajectories by randomly sampling from the robot’s

control space.
I select the best trajectory that maximizes the CSQMI objective.



Information gain

I 3. A Two-Stage Optimized Next-View Planning Framework
for 3-D Unknown Environment Exploration, and Structural
Reconstruction, IEEE ROBOTICS AND AUTOMATION
LETTERS, 2017.

I authors: Zehui Meng et al. (National University of
Singapore)



Two-Stage Optimized Next-View Planning Framework

Volumetric Information Gain Model
oi ∈ [0, 1] - occupancy state of the i-th volumetric cell on the ray.
The information gain at oi observed from a viewpoint xview ∈ Xview is

IG (p(oi|xview, z)) = H (p(oi))− H (p(oi|xview, z))

The expected total information gain of xview is

E [IG(xview)] =

∫
z
p(z|xview)

∑
oi∈C(z)

IG (p(oi|xview, z)) dz

C(z) is the set of covered cells by the measurement.

I A minimum set of viewpoints is sampled to cover the frontier
boundary regions between the explored free space and the
unknown space.

I A fixed start open travelling salesman problem (FSOTSP) solver
is employed to compute an optimal open exploration sequence.



I Choosing Where To Go: Complete 3D Exploration With
Stereo, ICRA, 2011.

I Robbie Shade and Paul Newman (Oxford University
Mobile Robotics Group)



Harmonic Functions
I A function φ which satisfies Laplace’s

Equation at every point.

O2φ =
∂2φ

∂x2 +
∂2φ

∂y2 +
∂2φ

∂z2 = 0

I Setting boundary conditions
I unknown boundary

φ(x) = f (x) ∀x ∈ ∂Sunknown

set f (x) = 0 to ensure that the
gradient of φ is orthogonal to
∂Sunknown.

I set f (x) = 1 at the voxel
containing the sensor.

I obstacle boundary

Oφ(x) = g(x) ∀x ∈ ∂Soccupied

set g(x) = 0 to ensure that Oφ
is parallel to ∂Soccupied.



Harmonic Functions
I Computing φ via finite difference method (FDM)

φx,y,z ≈
1
6

(φx±1,y,z + φx,y±1,z + φx,y,z±1)

I Choose the streamline following the path of max flow from the current
sensor pose that is we move down the steepest gradient.






