Active Structure from Motion

Sun Qinxuan

June 7, 2018

Sun Qinxuan [Active Structure from Motion](#page-34-0)

 $(1 - 4)$ $(1 -$

重。 299

OUTLINE

- **[Active Estimation Framework](#page-3-0)**
- **[Nonlinear Observation Scheme](#page-3-0)**
- **[Active Estimation Strategy](#page-7-0)**
- [Active Structure from Motion](#page-20-0)
	- [Depth Estimation for a Point Feature](#page-20-0)

3 [Experiment](#page-29-0)

- **•** [Simulation](#page-29-0)
- **•** [Experiment](#page-31-0)

メラメメラト

B

 QQ

REFERENCES

- **•** Feature Depth Observation for Image-based Visual Servoing: Theory and Experiments, IJRR, 2008.
- A framework for active estimation: Application to structure from motion, CDC, 2013.
- Active Structure From Motion Application to Point, Sphere, and Cylinder, TRO, 2014.

K 何 ▶ K ヨ ▶ K ヨ ▶

÷. QQ

Nonlinear Observation Scheme¹

dynamical system in the form

$$
\begin{cases} \dot{x}_m = f_m(x_m, u, t) + \Omega^T(t) x_u \\ \dot{x}_u = f_u(x_m, x_u, u, t) \end{cases}
$$
 (1)

where $x_m \in \mathbb{R}^m$ is the measurable component of the state, and $\boldsymbol{x}_u \in \mathbb{R}^p$ the unmeasurable component. Consider the following observer

> $\int \dot{\hat{\mathbf{x}}}_m = \mathbf{f}_m(\mathbf{x}_m, \mathbf{u}, t) + \mathbf{\Omega}^T(t)\hat{\mathbf{x}}_u + \mathbf{H}\xi$ $\dot{\hat{\mathbf{x}}}_u = \hat{\mathbf{f}}_u(\mathbf{x}_m, \hat{\mathbf{x}}_u, \mathbf{u}, t) + \mathbf{\Lambda} \mathbf{\Omega}(t) \hat{\mathbf{P}} \hat{\mathbf{s}}_u$ (2)

> > B

 $2Q$

 $\boldsymbol{\xi} = \boldsymbol{x}_m - \hat{\boldsymbol{x}}_m, \, \boldsymbol{z} = \boldsymbol{x}_u - \hat{\boldsymbol{x}}_u, \, \boldsymbol{e} = [\boldsymbol{\xi}^T, \boldsymbol{z}^T]^T$

¹Feature Depth Observation for Image-based Visual Servoing: Theory and Experiments, IJRR, 2008. **K ロ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶**

[Nonlinear Observation Scheme](#page-3-0) [Active Estimation Strategy](#page-7-0)

Nonlinear Observation Scheme

error dynamics

$$
\begin{cases} \dot{\xi} = -H\xi + \Omega^T(t)z \\ \dot{z} = -\Lambda\Omega(t)P\xi + (f_u(x_m,x_u,u,t) - f_u(x_m,\hat{x}_u,u,t)) \\ = -\Lambda\Omega(t)P\xi + g(e,t) \end{cases}
$$
 (3)

with *g*(*e*,*t*) being a "perturbation term" vanishing w.r.t. the error vector *e*, i.e., such that $g(0,t) = 0, \forall t$.

≮ロ ▶ ⊀ 御 ▶ ⊀ ヨ ▶ ⊀ ヨ ▶

÷.

[Nonlinear Observation Scheme](#page-3-0) [Active Estimation Strategy](#page-7-0)

Nonlinear Observation Scheme

Lemma 1 (Persistency of Excitation): Consider the system

$$
\begin{cases} \dot{\xi} = -H\xi + \Omega^{T}(t)z \\ \dot{z} = -\Lambda\Omega(t)P\xi \end{cases}
$$
\n(4)

where $\bm{H}>0,$ $\bm{P}=\bm{P}^T>0$ and $\bm{\Lambda}=\bm{\Lambda}^T>0.$ If $\|\bm{\Omega}\|(t)$ and $\|\dot{\bm{\Omega}}\|(t)$ are uniformly bounded and the *persistency of excitation* condition is satisfied, that is, there exists a $T > 0$ and $\gamma > 0$ such that

$$
\int_{t}^{t+T} \Omega(\tau) \Omega^{T}(\tau) d\tau \geq \gamma I_{p} > 0, \forall t \geq t_{0}
$$
 (5)

≮ロ ▶ ⊀ 御 ▶ ⊀ ヨ ▶ ⊀ ヨ ▶

B

 $2Q$

then $(\xi, z) = (0, 0)$ is a globally exponentially stable equilibrium point.

[Nonlinear Observation Scheme](#page-3-0) [Active Estimation Strategy](#page-7-0)

Nonlinear Observation Scheme

The origin of [\(3\)](#page-4-0) can be made globally exponentially stable². If there exists a positive M such that $\|g(\boldsymbol{e},t)\| \le M \|\boldsymbol{e}\|^2,$

$$
\dot{V}(e,t) \leq -c_3 ||e||^2 + \left\| \frac{\partial V}{\partial e} \right\| ||g(e,t)|| \leq -c_3 ||e||^2 + c_4 M ||e||^2 \qquad (6)
$$

If $m > p$, it is possible to instantaneously satisfy [\(5\)](#page-5-0) by enforcing

$$
\Omega(t)\Omega^{T}(t) \geq \frac{\gamma}{T}I, \forall t.
$$
 (7)

 $2Q$

²Feature Depth Observation for Image-based Visual Servoing: Theory and Experiments, IJRR, 2008. イロメ 不優 トメ ヨ メ ス ヨ メー

[Nonlinear Observation Scheme](#page-3-0) [Active Estimation Strategy](#page-7-0)

Active Estimation Strategy³

$$
\begin{cases} \dot{\xi} = -H\xi + \Omega^T(t)z \\ \dot{z} = -\Lambda\Omega(t)P\xi + g(e,t) \end{cases}
$$
 (8)

Consider the following change of coordinates

$$
\begin{cases} \tilde{\xi} = P^{\frac{1}{2}} \xi \\ \tilde{z} = \mathbf{\Lambda}^{-\frac{1}{2}} z \end{cases}
$$
 (9)

 $2Q$

the system [\(8\)](#page-7-1) takes the form

$$
\begin{pmatrix} \dot{\tilde{\xi}} \\ \dot{\tilde{z}} \end{pmatrix} = \left[\begin{pmatrix} 0 & \tilde{\Omega}^T(t) \\ -\tilde{\Omega}(t) & 0 \end{pmatrix} - \begin{pmatrix} \tilde{H} & 0 \\ 0 & 0 \end{pmatrix} \right] \begin{pmatrix} \tilde{\xi} \\ \tilde{z} \end{pmatrix} + \begin{pmatrix} 0 \\ \tilde{g} \end{pmatrix}
$$
(10)

 \bm{M} is the $\bm{\tilde{H}} = \bm{P}^{\frac{1}{2}} \bm{H} \bm{P}^{-\frac{1}{2}}, \ \bm{\tilde{\Omega}}(t) \bm{M} \bm{\tilde{\Omega}} = \bm{\Lambda}^{\frac{1}{2}} \bm{\Omega}(t) \bm{P}^{\frac{1}{2}}$ and $\bm{\tilde{g}} = \bm{\Lambda}^{\frac{1}{2}} \bm{g}.$

³A framework for active estimation: Application to structure from motion, CDC, 2013. → 意外 → 意外 →

[Nonlinear Observation Scheme](#page-3-0) [Active Estimation Strategy](#page-7-0)

Active Estimation Strategy

Neglect the presence of \tilde{g} and analyze the dynamics of \tilde{z}

$$
\dot{\tilde{z}} = -\tilde{\Omega}(t)\tilde{\xi} \qquad (11)
$$

\n
$$
\ddot{\tilde{z}} = -\dot{\tilde{\Omega}}\tilde{\xi} - \tilde{\Omega}\dot{\tilde{\xi}} \n= -\dot{\tilde{\Omega}}\tilde{\xi} - \tilde{\Omega}(-\tilde{H}\tilde{\xi} + \tilde{\Omega}^T\tilde{z}) \n= (\tilde{\Omega}\tilde{H} - \dot{\tilde{\Omega}})\tilde{\xi} - \tilde{\Omega}\tilde{\Omega}^T\tilde{z} \n= (\dot{\tilde{\Omega}}\tilde{\Omega}^\dagger - \tilde{\Omega}\tilde{H}\tilde{\Omega}^\dagger)\dot{\tilde{z}} - \tilde{\Omega}\tilde{\Omega}^T\tilde{z}
$$
\n(12)

4 0 8

 $\left\{ \left(\left| \mathbf{P} \right| \right) \in \mathbb{R} \right\} \times \left\{ \left| \mathbf{P} \right| \right\}$

÷.

 $2Q$

with $\tilde{\boldsymbol{\Omega}}^{\dagger} \in \mathbb{R}^{m \times p}$ denoting the pseudo-inverse of $\tilde{\boldsymbol{\Omega}}$.

[Nonlinear Observation Scheme](#page-3-0) [Active Estimation Strategy](#page-7-0)

Active Estimation Strategy

$$
\begin{aligned}\n\tilde{\mathbf{\Omega}} &= \tilde{\mathbf{U}} \tilde{\boldsymbol{\Sigma}} \tilde{\mathbf{V}}^T, \text{ where } \tilde{\boldsymbol{\Sigma}} = [\tilde{\mathbf{S}}, \mathbf{0}], \tilde{\mathbf{S}} = \text{diag}(\tilde{\sigma}_i) \in \mathbb{R}^{p \times p} \text{ and} \\
0 &\leq \tilde{\sigma}_1 \leq \cdots \leq \tilde{\sigma}_p. \\
\text{As for } \dot{\tilde{\mathbf{\Omega}}} \text{ it is } \dot{\tilde{\mathbf{\Omega}}} &= \dot{\tilde{\mathbf{U}}} \tilde{\boldsymbol{\Sigma}} \tilde{\mathbf{V}}^T + \tilde{\mathbf{U}} \dot{\tilde{\boldsymbol{\Sigma}}} \tilde{\mathbf{V}}^T + \tilde{\mathbf{U}} \tilde{\boldsymbol{\Sigma}} \dot{\tilde{\mathbf{V}}}^T. \\
\text{Denoting the skew-symmetric matrix } \tilde{\mathbf{\Gamma}}_U = \tilde{\mathbf{U}}^T \dot{\tilde{\mathbf{U}}} \text{ and } \tilde{\mathbf{\Gamma}}_V = \dot{\tilde{\mathbf{V}}}^T \tilde{\mathbf{V}}.\n\end{aligned}
$$

$$
\dot{\tilde{\mathbf{\Omega}}} = \tilde{U} (\tilde{\mathbf{\Gamma}}_U \tilde{\boldsymbol{\Sigma}} + \dot{\tilde{\boldsymbol{\Sigma}}} + \tilde{\boldsymbol{\Sigma}} \tilde{\mathbf{\Gamma}}_V) \tilde{V}^T
$$
\n(13)

K ロ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶

重。 299

$$
\dot{\tilde{\mathbf{\Omega}}}\tilde{\mathbf{\Omega}}^{\dagger} = \tilde{\mathbf{U}}\tilde{\mathbf{\Gamma}}_{U}\tilde{\boldsymbol{\Sigma}}\tilde{\boldsymbol{\Sigma}}^{\dagger}\tilde{\mathbf{U}}^{T} + \tilde{\mathbf{U}}\dot{\tilde{\boldsymbol{\Sigma}}}\tilde{\boldsymbol{\Sigma}}^{\dagger}\tilde{\mathbf{U}}^{T} + \tilde{\mathbf{U}}\tilde{\boldsymbol{\Sigma}}\tilde{\mathbf{\Gamma}}_{V}\tilde{\boldsymbol{\Sigma}}^{\dagger}\tilde{\mathbf{U}}^{T}
$$
\n
$$
= \tilde{\mathbf{U}}(\tilde{\mathbf{\Gamma}}_{U} + \dot{\tilde{\mathbf{S}}}\tilde{\mathbf{S}}^{-1} + \tilde{\mathbf{S}}\tilde{\mathbf{\Gamma}}_{V}\tilde{\mathbf{S}}^{-1})\tilde{\mathbf{U}}^{T}
$$
\n(14)

 $\bar{\bm{\Gamma}}_V = -\bar{\bm{\Gamma}}_V^T$ $_V^T$ is the $p\times p$ upper-left block of matrix $\tilde{\mathsf{\Gamma}}_V.$

[Nonlinear Observation Scheme](#page-3-0) [Active Estimation Strategy](#page-7-0)

Active Estimation Strategy

The matrix \tilde{H} is designed as

$$
\tilde{H} = \tilde{V} \begin{bmatrix} D_1 & 0 \\ 0 & D_2 \end{bmatrix} \tilde{V}^T
$$
 (15)

with $\boldsymbol{D}_1 \in \mathbb{R}^{p \times p} > 0$. This choice yields

$$
\tilde{\Omega}\tilde{H}\tilde{\Omega}^{\dagger}=\tilde{U}\tilde{S}D_1\tilde{S}^{-1}\tilde{U}^T
$$
\n(16)

4 0 8

K 何 ▶ K ヨ ▶ K ヨ ▶ ..

÷.

[Nonlinear Observation Scheme](#page-3-0) [Active Estimation Strategy](#page-7-0)

Active Estimation Strategy

finally

$$
\ddot{\tilde{z}} = \tilde{U}(\tilde{\Gamma}_U + \dot{\tilde{S}}\tilde{S}^{-1} + \tilde{S}\bar{\Gamma}_V\tilde{S}^{-1} - \tilde{S}D_1\tilde{S}^{-1})\tilde{U}^T\dot{\tilde{z}} - \tilde{U}\tilde{S}^2\tilde{U}^T\tilde{z} \n= (\tilde{U}\tilde{S})(\tilde{S}^{-1}\tilde{\Gamma}_U\tilde{S} + \dot{\tilde{S}}\tilde{S}^{-1} + \bar{\Gamma}_V - D_1)(\tilde{S}^{-1}\tilde{U}^T)\dot{\tilde{z}} - \tilde{U}\tilde{S}^2\tilde{U}^T\tilde{z} \qquad (17)\n= (\tilde{U}\tilde{S})(\tilde{\Pi} - D_1)(\tilde{S}^{-1}\tilde{U}^T)\dot{\tilde{z}} - (\tilde{U}\tilde{S})\tilde{S}^2(\tilde{S}^{-1}\tilde{U}^T)\tilde{z}
$$

where

$$
\tilde{\mathbf{\Pi}} = \tilde{\mathbf{S}}^{-1} \tilde{\mathbf{\Gamma}}_U \tilde{\mathbf{S}} + \dot{\tilde{\mathbf{S}}} \tilde{\mathbf{S}}^{-1} + \bar{\mathbf{\Gamma}}_V \tag{18}
$$

メロトメ 御 トメ 君 トメ 君 トッ

重。 299

[Nonlinear Observation Scheme](#page-3-0) [Active Estimation Strategy](#page-7-0)

Active Estimation Strategy

Consider a change of coordinates

$$
\eta = (\tilde{S}^{-1}\tilde{U}^T)\tilde{z}
$$
 (19)

in the approximation ${\tilde S}^{-1} {\tilde U}^T \approx const,$ the system takes the simple form

$$
\ddot{\eta} = (\tilde{\mathbf{\Pi}} - \mathbf{D}_1)\dot{\eta} - \tilde{\mathbf{S}}^2 \eta \tag{20}
$$

K 何 ▶ K ヨ ▶ K ヨ ▶ ...

ă,

 $2Q$

which is a (unit-)mass-spring-damper system with diagonal stiffness matrix $\tilde{\textbf{S}}^2$.

[Nonlinear Observation Scheme](#page-3-0) [Active Estimation Strategy](#page-7-0)

Active Estimation Strategy

The convergence rate of [\(20\)](#page-12-0) is related to the slowest mode of the system, i.e., that associated to the element $\tilde{\sigma}_{\rm l}^2$ in $\tilde{\textbf{S}}^2$. To impose a desired transient response to $\eta(t)$, one can "place" the holes" of [\(20\)](#page-12-0) by

- regulating $\tilde{\sigma}_{1}^{2}$ to a desired value $\tilde{\sigma}_{1,des}^{2},$
- \bullet shaping the damping factor D_1 to prevent the occurrence of oscillatory modes,

 $\langle \oplus \rangle$ > $\langle \oplus \rangle$ > $\langle \oplus \rangle$

[Nonlinear Observation Scheme](#page-3-0) [Active Estimation Strategy](#page-7-0)

Active Estimation Strategy

Shaping the damping factor *D*¹

A reasonable choice for D_1 could be $D_1 = \Pi + C$, with *C* any positive definite matrix, such as a diagonal one $C = diag(c_i), c_i > 0$, so as to obtain a decoupled transient behavior

$$
\ddot{\eta}_i + c_i \dot{\eta}_i + \tilde{\sigma}_i^2 \eta_i = 0, i = 1...p
$$
 (21)

イロト 不優 トイモト 不思 トー

 $2Q$

Taking $c_i = c_i^* = 2 \tilde{\sigma}_i$ imposes a *critically damped* evolution to the estimation error.

However, for any arbitrary pair $(C, \tilde{\Pi})$, D_1 may not necessarily remain positive definite over time.

[Nonlinear Observation Scheme](#page-3-0) [Active Estimation Strategy](#page-7-0)

Active Estimation Strategy

Shaping the damping factor D_1

By suitably bounding $\|\tilde{\Pi}\| \leq qI$, any $C > qI$ could guarantee $D_1 > 0$. However, this possibility results in an *over-damped transient response* for the system, since in the general case, $C > qI > \text{diag}(c_i^*)$.

Therefore, the effects of $\overline{\Pi}$ on the transient by just taking $D_1 = \text{diag}(c_i^*) > 0.$

K 何 ▶ K ヨ ▶ K ヨ ▶

ă,

[Nonlinear Observation Scheme](#page-3-0) [Active Estimation Strategy](#page-7-0)

Active Estimation Strategy

Tuning the stiffness matrix ${\tilde S}^2$

 ${\tilde S}^2 = {\rm diag}({\tilde \sigma}_i^2)$ contains the p eigenvalues of ${\tilde \Omega}{\tilde \Omega}^T$ and ${\boldsymbol S}^2 = \text{diag}(\sigma^2_i)$ the eigenvalues of ${\boldsymbol \Omega} {\boldsymbol \Omega}^T$ in the original coordinates (ξ ,*z*).

$$
\tilde{\Omega}\tilde{\Omega}^T = \Lambda^{\frac{1}{2}} \Omega P \Omega^T \Lambda^{\frac{1}{2}}
$$
 (22)

メ都 ドメ 君 ドメ 君 ドッ

 $2Q$

The gains *P*, Λ can be exploited to amplify/attenuate the eigenvalues of $\tilde{\textbf{S}}^2$.

Also, one needs to ensure a minimum threshold $\sigma_{\text{l}}^2(t) \geq \sigma_{\textit{min}}^2 > 0$ for the estimation to converge, i.e., for fulfilling the PE condition. This can be achieved by actively tuning matrix *S* 2 .

[Nonlinear Observation Scheme](#page-3-0) [Active Estimation Strategy](#page-7-0)

Active Estimation Strategy

Tuning the stiffness matrix ${\tilde S}^2$

Assuming $\bm{P} = \alpha \bm{I}$ and $\bm{\Lambda} = \beta \bm{I}, \, \alpha > 0, \beta > 0$ yields $\tilde{\sigma}_i^2 = \alpha \beta \, \sigma_i^2.$ Therefore, seeking a desired value $\tilde{\sigma}^2_i$ is equivalent to imposing

$$
\sigma_i^2 \to \sigma_{i,des}^2 = \frac{\tilde{\sigma}_{i,des}^2}{\alpha \beta} \tag{23}
$$

K 何 ▶ K ヨ ▶ K ヨ ▶

ă,

 $2Q$

One can then focus on the regulation of σ_i^2 .

[Nonlinear Observation Scheme](#page-3-0) [Active Estimation Strategy](#page-7-0)

Active Estimation Strategy

Tuning the stiffness matrix ${\tilde S}^2$

An explicit expression of the time derivative of $\sigma_i^2(t) = \sigma_i^2(\pmb{x}_m, \pmb{u}(t))$ can be obtained⁴

$$
\frac{\mathrm{d}}{\mathrm{d}t}\sigma_i^2(t) = \sum_{j=1}^{\nu} \left(\nu_i^T \frac{\partial (\boldsymbol{\Omega} \boldsymbol{\Omega}^T)}{\partial u_j} \nu_i \dot{u}_j \right) + \sum_{j=1}^n \left(\nu_i^T \frac{\partial (\boldsymbol{\Omega} \boldsymbol{\Omega}^T)}{\partial x_{m_j}} \nu_i \dot{x}_{m_j} \right) \tag{24}
$$

where $v_i \in \mathbb{R}^p$ is the normalized eigenvector associated to $\sigma_i^2.$

$$
\boldsymbol{J}_{u,i} = \begin{bmatrix} \boldsymbol{v}_i^T \frac{\partial (\boldsymbol{\Omega} \boldsymbol{\Omega}^T)}{\partial u_1} \boldsymbol{v}_i & \cdots & \boldsymbol{v}_i^T \frac{\partial (\boldsymbol{\Omega} \boldsymbol{\Omega}^T)}{\partial u_v} \boldsymbol{v}_i \end{bmatrix} \in \mathbb{R}^{1 \times v} \qquad (25)
$$
\n
$$
\boldsymbol{J}_{u,i} = \begin{bmatrix} \boldsymbol{v}_i^T \frac{\partial (\boldsymbol{\Omega} \boldsymbol{\Omega}^T)}{\partial x_{m_1}} \boldsymbol{v}_i & \cdots & \boldsymbol{v}_i^T \frac{\partial (\boldsymbol{\Omega} \boldsymbol{\Omega}^T)}{\partial x_{m_n}} \boldsymbol{v}_i \end{bmatrix} \in \mathbb{R}^{1 \times n} \qquad (26)
$$

⁴Estimating the Jacobian of the Singular Value Decomposition: Theory and Application, ECCV, 2000. イロト イ団ト イヨト イヨト

E

[Nonlinear Observation Scheme](#page-3-0) [Active Estimation Strategy](#page-7-0)

Active Estimation Strategy

Tuning the stiffness matrix ${\tilde S}^2$

Eq. [\(24\)](#page-18-0) can be rewritten as

$$
\left(\sigma_i^2\right) = \mathbf{J}_{u,i}\dot{\mathbf{u}} + \mathbf{J}_{x,i}\dot{\mathbf{x}}_m \tag{27}
$$

K 何 ▶ ス ヨ ▶ ス ヨ ▶ ..

 $2Q$

Any *differential inversion technique* can be applied to [\(27\)](#page-19-0) in order to affect the behavior of the *i*-th eigenvalue σ_i^2 by acting upon vector *u*.

It is in general not possible to fully compensate for the term $J_{x,i}x_m$ because of a direct dependence of x_m from the unmeasurable *xu*.

Depth Estimation for a Point Feature ⁵

Let $p = (x, y, 1) = (X/Z, Y/Z, 1) \in \mathbb{R}^3$ be the perspective projection of a 3D point $P = (X, Y, Z)$ onto the image plane of a pinhole camera. The differential relationship between the image motion of a point feature and the camera linear/angular velocity $\pmb{u} = (\pmb{\nu}, \pmb{\omega}) \in \mathbb{R}^6$ expressed in camera frame is

$$
\begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} = \begin{bmatrix} -\frac{1}{Z} & 0 & \frac{x}{Z} & xy & -(1+x^2) & y \\ 0 & -\frac{1}{Z} & \frac{y}{Z} & 1+y^2 & -xy & -x \end{bmatrix} u \tag{28}
$$

where *Z* is the depth of the feature point. The dynamics of *Z* is

$$
\dot{Z} = \begin{bmatrix} 0 & 0 & -1 & -yZ & xZ & 0 \end{bmatrix} u \tag{29}
$$

 2990

⁵Active Structure From Motion Application to Point, Sphere, and Cylinder, TRO, 2014. イロン 不優 メイヨン 不正 メーヨ

[Depth Estimation for a Point Feature](#page-20-0)

Depth Estimation for a Point Feature

By defining $x_m = (x, y)$ and $x_u = 1/Z$ with $m = 2$ and $p = 1$, we obtain for [\(1\)](#page-3-1)

$$
\begin{cases}\nf_m(x_m, u, t) = \begin{bmatrix}\nxy & -(1 + x^2) & y \\
1 + y^2 & -xy & -x\n\end{bmatrix} \omega \\
\Omega(x_m, v) = \begin{bmatrix}\nxv_z - v_x & yv_z - v_y\n\end{bmatrix} \\
f_u(x_m, x_u, u, t) = v_x x_u^2 + (y \omega_x - x \omega_y)x_u\n\end{cases}
$$
\n(30)

with the perturbation term $g(e,t)$ in [\(3\)](#page-4-0)

$$
g(e,t) = v_z(x_u^2 - \hat{x}_u^2) + (y\omega_x - x\omega_y)z \tag{31}
$$

KOD KAP KED KED E YA G

Depth Estimation for a Point Feature

In the point feature case, matrix ΩΩ*^T* reduces to its single eigenvalue

$$
\sigma_1^2 = \|\mathbf{\Omega}\|^2 = (xv_z - v_x)^2 + (yv_z - v_y)^2 \tag{32}
$$

then the Jacobian $J_{u,1}$ in [\(27\)](#page-19-0) is given by

$$
\boldsymbol{J}_{u,1} = 2 \begin{bmatrix} xv_z - v_x \\ yv_z - v_y \\ (xv_z - v_x)x + (yv_z - v_y)y \\ 0 \\ 0 \\ 0 \end{bmatrix}^T = [\boldsymbol{J}_{v,1} \quad \boldsymbol{0}] \qquad (33)
$$

K 何 ▶ K ヨ ▶ K ヨ ▶

4 0 8

÷.

Depth Estimation for a Point Feature

Some remarks:

- σ_1^2 does not depend on ω , it is possible to *freely exploit* the camera angular velocity for fulfilling additional goals of interest. For example, one can use ω for keeping $x_m \simeq const$ in order to render the effect of x_m in [\(27\)](#page-19-0).
- $\boldsymbol{J}_{\nu,1} \boldsymbol{p} = 0$: the derivative of σ_1^2 is orthogonal to projection ray passing through *p*.

K 何 ▶ K ヨ ▶ K ヨ ▶

ă,

Depth Estimation for a Point Feature

The value of σ_1^2 directly affects the convergence speed of the estimation error. What conditions on *p* and *v* result in the largest possible σ_1^2 ? Let $e_3 = (0, 0, 1)$ be the camera optical axis,

$$
\begin{bmatrix} \mathbf{\Omega}^T \\ 0 \end{bmatrix} = [e_3]_{\times} [p]_{\times} \nu \tag{34}
$$

K 何 ▶ K ヨ ▶ K ヨ ▶ ...

B

 QQ

Therefore

$$
\sigma_1^2 = \begin{bmatrix} \mathbf{\Omega}^T & 0 \end{bmatrix} \begin{bmatrix} \mathbf{\Omega}^T \\ 0 \end{bmatrix} = ||[e_3]_{\times} [p]_{\times} \nu||^2
$$

= $||p||^2 ||\nu||^2 \sin^2(\theta_{p,\nu}) \sin^2(\theta_{e_3,[p]_{\times} \nu})$ (35)

Depth Estimation for a Point Feature

The maximum attainable value for $\sigma_{\rm l}^2$ is

$$
\sigma_{\max}^2 = \max_{p,v} \sigma_1^2 = ||p||^2 ||v||^2
$$
 (36)

The maximum is obtained when

$$
\begin{bmatrix} \boldsymbol{p}^T \\ \boldsymbol{e}_3^T[\boldsymbol{p}]_\times \end{bmatrix} \boldsymbol{v} = \begin{bmatrix} x & y & 1 \\ -y & x & 0 \end{bmatrix} \boldsymbol{v} = 0 \tag{37}
$$

If $p \neq e_3$ (point feature *not* at the center the image plane), system [\(37\)](#page-25-0) has (full) rank 2 and admits the unique solution (up to a scalar factor)

$$
v = \delta[p]_{\times}^2 e_3, \quad \delta \in \mathbb{R}
$$
 (38)

K 何 ▶ K ヨ ▶ K ヨ ▶ ...

B

Depth Estimation for a Point Feature

$$
\nu=\delta[p]_\times^2e_3,\quad \delta\in\mathbb{R}
$$

This requires *v* to be orthogonal to *p* and to lie on the plane defined by vectors p and e_3 .

If $p = e_3$ (point feature at the center of the image plane), system [\(37\)](#page-25-0) loses rank and any $v \perp e_3$ is a valid solution.

K 何 ▶ K ヨ ▶ K ヨ ▶ ...

B

Depth Estimation for a Point Feature

Conclusion: For a given norm of the linear velocity $\|\nu\|$, system [\(37\)](#page-25-0) determines the direction of *v* resulting in $\sigma_1^2 = \sigma_{\text{max}}^2$. The value of σ_{\max}^2 is also a function of the feature point location *p* that can be arbitrarily positioned on the image plane. $\sigma_{\max}^2 = \|v\|^2$ for $p = e_3$ and $\sigma_{\max}^2 = \|p\|^2 \|v\|^2 > \|v\|^2 \; \forall p \neq e_3.$

≮ロ ▶ ⊀ 御 ▶ ⊀ ヨ ▶ ⊀ ヨ ▶

B

Depth Estimation for a Point Feature

- The smallest σ_{\max}^2 (the slowest "optimal" convergence for the depth estimation error) is obtained for the smallest value of $||p||$, i.e., $p = e_3$ (feature point at the center of the image plane). In this case $v_z = 0$ ($v \perp p$), the camera moves on the surface of a sphere with a constant radius (depth) pointing at the feature point. And $g(e,t) \equiv 0$ and global convergence is achieved.
- The largest σ_{\max}^2 (the fastest "optimal" convergence) is obtained for the largest possible value of $||p||$. However, this results in $g(e,t) \neq 0$ and only local convergence is achieved.

K ロ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶

B

[Simulation](#page-29-0)

Simulation

- A constant $v(t) \equiv v(t_0) = const$ is kept during motion with $v(t_0)$ being a solution of [\(37\)](#page-25-0).
- Consider three cases.
	- case I: the point feature is kept at the center of the image plane (red line),
	- case II: the point feature is kept at one of the corners of an image plane with the same size of the camera used in the experiments (green line).
	- case III: the point feature is kept at one of the corners of an image plane with a size five times larger than case II (blue line).

イロト イ押 トイヨ トイヨト

B

 QQ

[Simulation](#page-29-0)

Simulation

[Experiment](#page-31-0)

Experiment

- \bullet $\|\nu\|$ is kept constant over time.
- **•** The angular velocity input ω is exploited to keep $s \simeq (0,0)$ over time (point feature kept at the center the image plane).
- **•** Control law

$$
\dot{\mathbf{v}} = \frac{\mathbf{v}}{\|\mathbf{v}\|^2} k_1 (\kappa_{des} - \kappa) + k_2 \left(\mathbf{I}_3 - \frac{\mathbf{v} \mathbf{v}^T}{\|\mathbf{v}\|^2} \right) \mathbf{J}_{v,1}^T
$$
(39)

with $k_1>0, \, k_2\geq 0, \, \kappa=\frac{1}{2}$ $\frac{1}{2}\mathbf{v}^T\mathbf{v}$, $\kappa_{des} = \frac{1}{2}$ $\frac{1}{2}\nu_0^T \nu_0.$

- Consider two cases,
	- case I: $\sigma_1^2(t)$ is actively maximized ($k_2 = 0$, red line),
	- case II: constant velocity $v(t) = v_0 = const$ ($k_2 > 0$, blue line).

イロト イ押 トイヨ トイヨ トー

B

 QQ

[Simulation](#page-29-0) **[Experiment](#page-31-0)**

Experiment

- case I: $\sigma_1^2(t)$ is actively maximized ($k_2 = 0$, red line),
- case II: constant velocity $v(t) = v_0 = const$ ($k_2 > 0$,

Figure: Behavior of the estimation error.

 $A\equiv \mathbb{R} \Rightarrow A\equiv \mathbb{R}$

 \leftarrow 4 0 8

×

÷.

 2990

[Simulation](#page-29-0) [Experiment](#page-31-0)

Experiment

- case I: $\sigma_1^2(t)$ is actively maximized ($k_2 = 0$, red line),
- case II: constant velocity $v(t) = v_0 = const$ ($k_2 > 0$,

Figure: Camera trajectories.

 290

ă

[Simulation](#page-29-0) **[Experiment](#page-31-0)**

Experiment

- case I: $\sigma_1^2(t)$ is actively maximized ($k_2 = 0$, red line),
- case II: constant velocity $v(t) = v_0 = const$ ($k_2 > 0$,

Figure: Behavior of $\sigma_1^2(t)$.

 $\mathcal{A} \ \overline{\mathcal{B}} \ \rightarrow \ \mathcal{A} \ \overline{\mathcal{B}} \ \rightarrow$

 \leftarrow 4 0 8

×

 \equiv

 2990