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Nonlinear Observation Scheme 1

dynamical system in the form{
ẋm = f m(xm,u, t) +ΩT(t)xu

ẋu = f u(xm,xu,u, t)
(1)

where xm ∈ Rm is the measurable component of the state, and
xu ∈ Rp the unmeasurable component.
Consider the following observer{

˙̂xm = f m(xm,u, t) +ΩT(t)x̂u + Hξ

˙̂xu = f u(xm, x̂u,u, t) +ΛΩ(t)Pξ
(2)

ξ = xm− x̂m, z = xu− x̂u, e = [ξ T ,zT ]T

1Feature Depth Observation for Image-based Visual Servoing: Theory
and Experiments, IJRR, 2008.
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error dynamics
ξ̇ =−Hξ +ΩT(t)z
ż =−ΛΩ(t)Pξ + (f u(xm,xu,u, t)− f u(xm, x̂u,u, t))

=−ΛΩ(t)Pξ + g(e, t)
(3)

with g(e, t) being a “perturbation term” vanishing w.r.t. the error
vector e, i.e., such that g(0, t) = 0,∀t.
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Lemma 1 (Persistency of Excitation): Consider the system{
ξ̇ =−Hξ +ΩT(t)z
ż =−ΛΩ(t)Pξ

(4)

where H > 0, P = PT > 0 and Λ = ΛT > 0. If ‖Ω‖(t) and ‖Ω̇‖(t)
are uniformly bounded and the persistency of excitation
condition is satisfied, that is, there exists a T > 0 and γ > 0 such
that ∫ t+T

t
Ω(τ)ΩT(τ)dτ ≥ γIp > 0,∀t ≥ t0 (5)

then (ξ ,z) = (0,0) is a globally exponentially stable equilibrium
point.
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The origin of (3) can be made globally exponentially stable2. If
there exists a positive M such that ‖g(e, t)‖ ≤M‖e‖2,

V̇(e, t)≤−c3‖e‖2 +

∥∥∥∥∂V
∂e

∥∥∥∥‖g(e, t)‖ ≤ −c3‖e‖2 + c4M‖e‖2 (6)

If m≥ p, it is possible to instantaneously satisfy (5) by enforcing

Ω(t)ΩT(t)≥ γ

T
I,∀t. (7)

2Feature Depth Observation for Image-based Visual Servoing: Theory
and Experiments, IJRR, 2008.
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{
ξ̇ =−Hξ +ΩT(t)z
ż =−ΛΩ(t)Pξ + g(e, t)

(8)

Consider the following change of coordinates{
ξ̃ = P

1
2 ξ

z̃ = Λ−
1
2 z

(9)

the system (8) takes the form(
˙̃
ξ

˙̃z

)
=

[(
0 Ω̃

T
(t)

−Ω̃(t) 0

)
−
(

H̃ 0
0 0

)](
ξ̃

z̃

)
+

(
0
g̃

)
(10)

with H̃ = P
1
2 HP−

1
2 , Ω̃(t) = Λ

1
2Ω(t)P

1
2 and g̃ = Λ

1
2 g.

3A framework for active estimation: Application to structure from motion,
CDC, 2013.
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Neglect the presence of g̃ and analyze the dynamics of ¨̃z

˙̃z =−Ω̃(t)ξ̃ (11)

¨̃z =− ˙̃Ωξ̃ − Ω̃
˙̃
ξ

=− ˙̃Ωξ̃ − Ω̃(−H̃ξ̃ + Ω̃
T

z̃)

= (Ω̃H̃− ˙̃Ω)ξ̃ − Ω̃Ω̃
T

z̃

= ( ˙̃ΩΩ̃
†− Ω̃H̃Ω̃

†
)˙̃z− Ω̃Ω̃

T
z̃

(12)

with Ω̃
† ∈ Rm×p denoting the pseudo-inverse of Ω̃.
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Ω̃ = ŨΣ̃ṼT , where Σ̃ = [S̃,0], S̃ = diag(σ̃i) ∈ Rp×p and
0≤ σ̃1 ≤ ·· · ≤ σ̃p.

As for ˙̃Ω it is ˙̃Ω = ˙̃UΣ̃ṼT
+ Ũ ˙̃ΣṼT

+ ŨΣ̃ ˙̃VT .
Denoting the skew-symmetric matrix Γ̃U = ŨT ˙̃U and Γ̃V = ˙̃VT Ṽ.

˙̃Ω = Ũ(Γ̃UΣ̃+ ˙̃Σ+ Σ̃Γ̃V)ṼT (13)

˙̃ΩΩ̃
†

= ŨΓ̃UΣ̃Σ̃
†
ŨT

+ Ũ ˙̃ΣΣ̃
†
ŨT

+ ŨΣ̃Γ̃VΣ̃
†
ŨT

= Ũ(Γ̃U + ˙̃SS̃−1
+ S̃Γ̄V S̃−1

)ŨT
(14)

Γ̄V =−Γ̄T
V is the p×p upper-left block of matrix Γ̃V .
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The matrix H̃ is designed as

H̃ = Ṽ
[

D1 0
0 D2

]
ṼT (15)

with D1 ∈ Rp×p > 0.
This choice yields

Ω̃H̃Ω̃
†

= ŨS̃D1S̃−1ŨT (16)
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finally

¨̃z = Ũ(Γ̃U + ˙̃SS̃−1
+ S̃Γ̄V S̃−1− S̃D1S̃−1

)ŨT ˙̃z− ŨS̃2ŨT z̃

= (ŨS̃)(S̃−1
Γ̃US̃ + ˙̃SS̃−1

+ Γ̄V −D1)(S̃−1ŨT
)˙̃z− ŨS̃2ŨT z̃

= (ŨS̃)(Π̃−D1)(S̃−1ŨT
)˙̃z− (ŨS̃)S̃2

(S̃−1ŨT
)z̃

(17)

where
Π̃ = S̃−1

Γ̃US̃ + ˙̃SS̃−1
+ Γ̄V (18)
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Consider a change of coordinates

η = (S̃−1ŨT
)z̃ (19)

in the approximation S̃−1ŨT ≈ const, the system takes the
simple form

η̈ = (Π̃−D1)η̇− S̃2
η (20)

which is a (unit-)mass-spring-damper system with diagonal
stiffness matrix S̃2

.
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The convergence rate of (20) is related to the slowest mode of
the system, i.e., that associated to the element σ̃2

1 in S̃2
.

To impose a desired transient response to η(t), one can “place
the holes” of (20) by

regulating σ̃2
1 to a desired value σ̃2

1,des,
shaping the damping factor D1 to prevent the occurrence of
oscillatory modes,
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Shaping the damping factor D1
A reasonable choice for D1 could be D1 = Π̃+ C, with C any
positive definite matrix, such as a diagonal one
C = diag(ci),ci > 0, so as to obtain a decoupled transient
behavior

η̈i + ciη̇i + σ̃
2
i ηi = 0, i = 1 . . .p (21)

Taking ci = c∗i = 2σ̃i imposes a critically damped evolution to the
estimation error.
However, for any arbitrary pair (C,Π̃), D1 may not necessarily
remain positive definite over time.
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Shaping the damping factor D1
By suitably bounding ‖Π̃‖ ≤ qI, any C > qI could guarantee
D1 > 0. However, this possibility results in an over-damped
transient response for the system, since in the general case,
C > qI > diag(c∗i ).
Therefore, the effects of Π̃ on the transient by just taking
D1 = diag(c∗i ) > 0.
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Tuning the stiffness matrix S̃2

S̃2
= diag(σ̃2

i ) contains the p eigenvalues of Ω̃Ω̃
T

and
S2 = diag(σ2

i ) the eigenvalues of ΩΩT in the original
coordinates (ξ ,z).

Ω̃Ω̃
T

= Λ
1
2ΩPΩTΛ

1
2 (22)

The gains P, Λ can be exploited to amplify/attenuate the
eigenvalues of S̃2

.
Also, one needs to ensure a minimum threshold σ2

1 (t)≥ σ2
min > 0

for the estimation to converge, i.e., for fulfilling the PE condition.
This can be achieved by actively tuning matrix S2.
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Tuning the stiffness matrix S̃2

Assuming P = αI and Λ = β I, α > 0,β > 0 yields σ̃2
i = αβσ2

i .
Therefore, seeking a desired value σ̃2

i is equivalent to imposing

σ
2
i → σ

2
i,des =

σ̃2
i,des

αβ
(23)

One can then focus on the regulation of σ2
i .
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Tuning the stiffness matrix S̃2

An explicit expression of the time derivative of
σ2

i (t) = σ2
i (xm,u(t)) can be obtained4

d
dt

σ
2
i (t) =

v

∑
j=1

(
vT

i
∂ (ΩΩT)

∂uj
viu̇j

)
+

n

∑
j=1

(
vT

i
∂ (ΩΩT)

∂xmj

viẋmj

)
(24)

where vi ∈ Rp is the normalized eigenvector associated to σ2
i .

Ju,i =
[
vT

i
∂ (ΩΩT)

∂u1
vi · · · vT

i
∂ (ΩΩT)

∂uv
vi

]
∈ R1×v (25)

Ju,i =
[
vT

i
∂(ΩΩT)

∂xm1
vi · · · vT

i
∂ (ΩΩT)

∂xmn
vi

]
∈ R1×n (26)

4Estimating the Jacobian of the Singular Value Decomposition: Theory
and Application, ECCV, 2000.
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Tuning the stiffness matrix S̃2

Eq. (24) can be rewritten as

˙(
σ2

i

)
= Ju,iu̇ + Jx,iẋm (27)

Any differential inversion technique can be applied to (27) in
order to affect the behavior of the i-th eigenvalue σ2

i by acting
upon vector u̇.
It is in general not possible to fully compensate for the term
Jx,iẋm because of a direct dependence of ẋm from the
unmeasurable xu.
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Depth Estimation for a Point Feature 5

Let p = (x,y,1) = (X/Z,Y/Z,1) ∈ R3 be the perspective
projection of a 3D point P = (X,Y,Z) onto the image plane of a
pinhole camera. The differential relationship between the
image motion of a point feature and the camera linear/angular
velocity u = (v,ω) ∈ R6 expressed in camera frame is[

ẋ
ẏ

]
=

[
− 1

Z 0 x
Z xy −(1 + x2) y

0 − 1
Z

y
Z 1 + y2 −xy −x

]
u (28)

where Z is the depth of the feature point. The dynamics of Z is

Ż =
[
0 0 −1 −yZ xZ 0

]
u (29)

5Active Structure From Motion Application to Point, Sphere, and Cylinder,
TRO, 2014.
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By defining xm = (x,y) and xu = 1/Z with m = 2 and p = 1, we
obtain for (1)

f m(xm,u, t) =

[
xy −(1 + x2) y

1 + y2 −xy −x

]
ω

Ω(xm,v) =
[
xvz− vx yvz− vy

]
fu(xm,xu,u, t) = vxx2

u + (yωx− xωy)xu

(30)

with the perturbation term g(e, t) in (3)

g(e, t) = vz(x2
u− x̂2

u) + (yωx− xωy)z (31)
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In the point feature case, matrix ΩΩT reduces to its single
eigenvalue

σ
2
1 = ‖Ω‖2 = (xvz− vx)2 + (yvz− vy)2 (32)

then the Jacobian Ju,1 in (27) is given by

Ju,1 = 2



xvz− vx

yvz− vy

(xvz− vx)x + (yvz− vy)y
0
0
0



T

=
[
Jv,1 0

]
(33)

Sun Qinxuan Active Structure from Motion



Active Estimation Framework
Active Structure from Motion

Experiment
Depth Estimation for a Point Feature

Depth Estimation for a Point Feature

Some remarks:
σ2

1 does not depend on ω, it is possible to freely exploit the
camera angular velocity for fulfilling additional goals of
interest. For example, one can use ω for keeping
xm ' const in order to render the effect of ẋm in (27).
Jv,1p = 0: the derivative of σ2

1 is orthogonal to projection ray
passing through p.
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The value of σ2
1 directly affects the convergence speed of the

estimation error. What conditions on p and v result in the
largest possible σ2

1 ?
Let e3 = (0,0,1) be the camera optical axis,[

ΩT

0

]
= [e3]×[p]×v (34)

Therefore

σ
2
1 =

[
ΩT 0

][ΩT

0

]
= ‖[e3]×[p]×v‖2

= ‖p‖2‖v‖2 sin2 (θp,v)sin2 (
θe3,[p]×v

) (35)
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The maximum attainable value for σ2
1 is

σ
2
max = max

p,v
σ

2
1 = ‖p‖2‖v‖2 (36)

The maximum is obtained when[
pT

eT
3 [p]×

]
v =

[
x y 1
−y x 0

]
v = 0 (37)

If p 6= e3 (point feature not at the center the image plane),
system (37) has (full) rank 2 and admits the unique solution (up
to a scalar factor)

v = δ [p]2
×e3, δ ∈ R (38)
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v = δ [p]2
×e3, δ ∈ R

This requires v to be orthogonal to p and to lie on the plane
defined by vectors p and e3.
If p = e3 (point feature at the center of the image plane), system
(37) loses rank and any v⊥ e3 is a valid solution.
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Conclusion:
For a given norm of the linear velocity ‖v‖, system (37)
determines the direction of v resulting in σ2

1 = σ2
max.

The value of σ2
max is also a function of the feature point location

p that can be arbitrarily positioned on the image plane.
σ2

max = ‖v‖2 for p = e3 and σ2
max = ‖p‖2‖v‖2 > ‖v‖2 ∀p 6= e3.
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The smallest σ2
max (the slowest “optimal” convergence for

the depth estimation error) is obtained for the smallest
value of ‖p‖, i.e., p = e3 (feature point at the center of the
image plane). In this case vz = 0 (v⊥ p), the camera moves
on the surface of a sphere with a constant radius (depth)
pointing at the feature point. And g(e, t)≡ 0 and global
convergence is achieved.
The largest σ2

max (the fastest “optimal” convergence) is
obtained for the largest possible value of ‖p‖. However,
this results in g(e, t) 6= 0 and only local convergence is
achieved.
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Simulation

A constant v(t)≡ v(t0) = const is kept during motion with
v(t0) being a solution of (37).
Consider three cases,

case I: the point feature is kept at the center of the image
plane (red line),
case II: the point feature is kept at one of the corners of an
image plane with the same size of the camera used in the
experiments (green line).
case III: the point feature is kept at one of the corners of an
image plane with a size five times larger than case II (blue
line).
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‖v‖ is kept constant over time.
The angular velocity input ω is exploited to keep s' (0,0)
over time (point feature kept at the center the image plane).
Control law

v̇ =
v
‖v‖2 k1(κdes−κ) + k2

(
I3−

vvT

‖v‖2

)
JT

v,1 (39)

with k1 > 0, k2 ≥ 0, κ = 1
2 vTv, κdes = 1

2 vT
0 v0.

Consider two cases,
case I: σ2

1 (t) is actively maximized (k2 = 0, red line),
case II: constant velocity v(t) = v0 = const (k2 > 0, blue line).
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case I: σ2
1 (t) is actively maximized (k2 = 0, red line),

case II: constant velocity v(t) = v0 = const (k2 > 0,

Figure: Behavior of the estimation error.
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case I: σ2
1 (t) is actively maximized (k2 = 0, red line),

case II: constant velocity v(t) = v0 = const (k2 > 0,

Figure: Camera trajectories.
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case I: σ2
1 (t) is actively maximized (k2 = 0, red line),

case II: constant velocity v(t) = v0 = const (k2 > 0,

Figure: Behavior of σ2
1 (t).
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