Plane-ORB-SLAM

Sun Qinxuan

May 6, 2019

Sun Qinxuan [Plane-ORB-SLAM](#page-13-0)

K ロト K 御 ト K 君 ト K 君 ト

È

OUTLINE

1 [Robust Optical-Flow Based Self-Motion Estimation](#page-2-0)

イロト (何) イミト イヨト

E

Robust Optical-Flow Based Self-Motion Estimation

● V. Grabe, H. H. Bülthoff and P. Robuffo Giordano, "Robust optical-flow based self-motion estimation for a quadrotor UAV," *2012 IEEE/RSJ International Conference on Intelligent Robots and Systems*, Vilamoura, 2012, pp. 2153-2159.

つくい

Continuous Homography Constraint

- $\hat{\mathbf{X}} = \hat{\mathbf{\omega}} X + \mathbf{v}$
- Consider a set of features located on a common plane of equation $N^T X = d$, where $N \in \mathbb{S}^2$, $d \in \mathbb{R}$.

$$
\dot{X} = \hat{\boldsymbol{\omega}}X + v\frac{1}{d}N^TX = \left(\hat{\boldsymbol{\omega}} + v\frac{1}{d}N^T\right)X = \boldsymbol{H}X
$$
 (1)

つくい

- The matrix $\boldsymbol{H} \in \mathbb{R}^{3 \times 3}$ is *continuous homography matrix*.
- \bullet *H* encodes the camera linear/angular velocity (v, ω) and the plane structure (*N*,*d*).

Continuous Homography Constraint

$$
\bullet \ \lambda x = X
$$

$$
\bullet \ \dot{X} = \dot{\lambda}x + \lambda \dot{x} = \dot{\lambda}x + \lambda u
$$

$$
u = Hx - \frac{\dot{\lambda}}{\lambda}x
$$
 (2)

• Continuous homography constraint

$$
\hat{x}Hx = \hat{x}u \tag{3}
$$

イロト (何) イミト イヨト

E

Extended 4-Point Algorithm

• Continuous homography constraint

$$
\hat{x}Hx = \hat{x}u \tag{4}
$$

Stack the elements of *H* into the vector $H^S = [H_{11}, H_{21}, \cdots, H_{33}] \in \mathbb{R}^9$ and rewrite [\(4\)](#page-5-0) as

$$
a^T H^S = \hat{x} u \tag{5}
$$

Stack all the a_i from *n* tracked features into $A = [a_1, \dots, a_n]^T \in \mathbb{R}^{3n \times 9}$ and stack all $\hat{x}_i u_i$ into $\mathbf{B} = [\hat{x}_1 u_1, \cdots, \hat{x}_n u_n]^T \in \mathbb{R}^{3n}$.

$$
AH^S = B \tag{6}
$$

つくへ

Extended 4-Point Algorithm

- \bullet The angular velocity is obtained directly from the IMU $\omega = \omega_{IMU}$.
- Subtract the rotational components from the perceived flow using the interaction matrix which relates \boldsymbol{u} to (\boldsymbol{v} , $\boldsymbol{\omega}$).

$$
\begin{bmatrix} u'_x \\ u'_y \end{bmatrix} = \begin{bmatrix} u_x \\ u_y \end{bmatrix} - \begin{bmatrix} -x_x x_y & 1 + x_x^2 & -x_y \\ -(1 + x_y)^2 & x_x x_y & x_x \end{bmatrix} \boldsymbol{\omega}
$$
 (7)

∢ ロ ▶ ∢ 伊 ▶ ∢ ヨ ▶

つくい

- Thus *H* reduces to $H=\frac{1}{I}$ $\frac{1}{d}$ *vN*^{*T*} (8)
- *N* spans H^T and $\|N\| = 1$ and so *N* can be obtained by an SVD of H . • $v/d = HN$.

Planarity Measures

- To test whether a certain group of observed features belongs to a common plane.
- Consider two different quantitative measures.
- First one,
	- $A H^S = B$
	- $rank(A) = rank([A B]) = 8$
	- σ_i , *i* = 1, \cdots , 10 are the singular values of $[A \, B] \in \mathbb{R}^{3n \times 10}$ in decreasing order.
	- The value σ_9 can be exploited as a measure of how well a certain set of features/optical flow meets the planarity constraint.
- Second one,
	- $H^S = A^{\dagger}B$ is the LS solution.
	- Consider the "reprojection" vector

$$
\mathbf{R} = \mathbf{B} - A\mathbf{H}^S = \mathbf{B} - A\mathbf{A}^\dagger \mathbf{B} = (\mathbf{I} - A\mathbf{A}^\dagger)\mathbf{B}
$$
(9)

K ロ ⊁ K 伊 ⊁ K ヨ ⊁

 QQQ

• another measure $r = ||R||/n$

Map Initialization in ORB-SLAM

• Parallel computation of two models: a homography H_{cr} and a fundamental matrix *Fcr*

$$
\boldsymbol{x}_c = \boldsymbol{H}_{cr} \boldsymbol{x}_r \quad \boldsymbol{x}_c^T \boldsymbol{F}_{cr} \boldsymbol{x}_r = 0 \tag{10}
$$

- The homography is computed with the normalized DLT algorithm.
- \bullet Eight motion hypotheses are retrieved from the homography.¹

¹O. D. Faugeras and F. Lustman, "Motion and structure from motion in a piecewise planar environment," Int. J. Pattern Recog. Artif. Intell., vol. 2, no. 03, pp. 485508, 1988. ←ロト (伊) (日) (日)

Homography Constraint Consistent with ORB-SLAM

• Homography constraint

$$
\boldsymbol{x}_c = \boldsymbol{H}_{cr} \boldsymbol{x}_r \tag{11}
$$

with

$$
\boldsymbol{H}_{cr} = d_r \boldsymbol{R}_{cr} + t_{cr} \boldsymbol{n}_r^T \tag{12}
$$

encodes the information of camera poses and the plane $n_r^T X_r = d_r$.

 \bullet DLT algorithm ²

$$
\hat{\mathbf{x}}_{ci}\mathbf{H}_{cr}\mathbf{x}_{ri} = 0 \tag{13}
$$

rewrite [\(13\)](#page-9-0) as

$$
A_i H^S = 0 \tag{14}
$$

Stacking $A = [A_1^T, \dots, A_n^T]^T \in \mathbb{R}^{3n \times 9}$ yields the similar equation (compared with the continuous homography constraint)

$$
\begin{aligned}\n\min & \quad \|\mathbf{A}\mathbf{H}^S\| \\
\text{s.t.} & \quad \|\mathbf{H}^S\| = 1\n\end{aligned} \tag{15}
$$

 QQ

The solution is the unit eigenvector of A^TA with the least eigenvalue.

²R. Hartley and A. Zisserman, "Multiple View Geometry in Computer Vision". Cambridge University Press, 2003, second Edition. イロト イ押 トイヨ トイヨ トー

Homography Constraint Consistent with ORB-SLAM

- Similarly to Ref. $\left[3\right]$ the planarity measure can be defined:
- First one,
	- \bullet 9-th singular value σ_9 of A.
- Second one,
	- *R* = *AH*^S = *Av*₉ = *U*Σ*V*^T v₉ = σ₉*u*₉
	- $r = ||R||/n = \sigma_9/n$

³V. Grabe, H. H. Bülthoff and P. Robuffo Giordano, "Robust optical-flow based self-motion estimation for a quadrotor UAV," *2012 IEEE/RSJ International Conference on Intelligent Robots and Systems*, Vilamour[a, 2](#page-9-1)[01](#page-11-0)[2,](#page-9-1) [pp](#page-10-0)[.](#page-11-0) [21](#page-0-0)[53-](#page-13-0)[21](#page-0-0)[59.](#page-13-0)

 Ω

Homography Constraint in BA

BA optimization in ORB-SLAM

• The error term for the observation of a map point *j* in a keyframe *i* is

$$
e_{i,j} = x_{i,j} - \pi_i(T_{iw}, X_{w,j}) \qquad (16)
$$

 QQ

K ロ ⊁ K 伊 ⊁ K

Tkw kj ,

^Tiw ij ,

Homography Constraint in BA

- Homography constraint in BA
	- \bullet Given that the map point *j* is on a plane indexed by *l*,
	- Add an error term for the homography transform between two frames *i* and *k* w.r.t. the plane *l* (associated with the map point *j*) in the map.

$$
\boldsymbol{e}_{ik,j} = \boldsymbol{x}_{i,j} - \boldsymbol{H}_{ik,l}(\boldsymbol{T}_{iw}, \boldsymbol{T}_{kw}, \boldsymbol{n}_{w,l}) \cdot \boldsymbol{x}_{k,j}
$$
\n(17)

unknowns: T_{iw} ∈ SE(3), $X_{w,j}$ ∈ ℝ³,
n, \in S² $n_{w,l} \in \mathbb{S}^2$.

∢ ロ ▶ ∢ 伊 ▶ ∢

 OQ

Homography Constraint in BA

- Optimization of $n_{w,l} \in \mathbb{S}^2$.
	- The local update is defined in the tangent space of $n_{w,l}$ at \mathbb{S}^2 .
	- Local update $\boldsymbol{\zeta} \in \mathbb{R}^2$
	- updated variable $n'_{w,l} = N\left(J_{\zeta}(n_{w,l})\zeta + n_{w,l}\right)$. ⁴
	- $J_{\zeta}(n_{w,l}) = \text{null}(n_{w,l}^T)$
	- \bullet N(\cdot) normalized a vector to unit length.
	- Jacobian matrix of the error w.r.t. ζ

$$
\frac{\partial e_{ik,j}}{\zeta} = t_{iw} x_{kj}^T (I - n_{w,l} n_{w,l}^T) J_{\zeta}(n_{w,l})
$$
\n(18)

 QQ

Asian Conference on Computer Vision, 2010.

⁴W. Förstner. "Minimal Representations for Testing and Estimation in Projective Spaces."